• Title/Summary/Keyword: Code Reconstruction

Search Result 91, Processing Time 0.027 seconds

Three-dimensional QR Code Using Integral Imaging (집적 영상을 활용한 3차원 QR code)

  • Kim, Youngjun;Cho, Ki-Ok;Han, Jaeseung;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2363-2369
    • /
    • 2016
  • In this paper, we propose three-dimensional (3D) quick-response (QR) code generation technique using passive 3D integral imaging and computational integral imaging reconstruction technique. In our proposed method, we divide 2D QR code into 4 planes with different reconstruction depths and then we generate 3D QR code using synthetic aperture integral imaging and computational reconstruction. In this 3D QR code generation process, we use integral imaging which is one of 3D imaging technologies. Finally, 3D QR code can be scanned by reconstructing and merging 3D QR codes at 4 different planes with computational reconstruction. Therefore, the security level for QR code scanning may be enhanced when QR code is scanned. To show that our proposed method can improve the security level for QR code scanning, in this paper, we carry out the optical experiments and computational reconstruction. In addition, we show that 3D QR code can be scanned when reconstruction depths are known.

Blind Block Deinterleaving using Convolutional Code Reconstruction Method (길쌈 부호 복원 기법을 이용한 블라인드 블록 디인터리빙)

  • Jeong, Jin-Woo;Yoon, Dong-Weon;Park, Cheol-Sun;Yun, Sang-Bom;Lee, Sang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.10-16
    • /
    • 2011
  • Interleaving is applied to prevent from exceeding the error-correction capability of channel code. At the receiver, burst errors are converted into random errors after deinterleaving, so the error-correction capability of channel code is not exceeded. However, when a receiver does not have any information on parameters used at an interleaver, interleaving can be seen as an encryption with some pattern. In this case, deinterleaving becomes complicated. In the field of blind deinterleaving, there have recently been a number of researches using linearity of linear block code. In spite of those researches, since the linearity is not applicable to a convolutional code, it is difficult to estimate parameters as in a linear block code. In this paper, we propose a method of blind block deinterleaving using convolutional code reconstruction method.

Design of Learning Process with Code Reconstruction Principle for Non-computer Majors

  • Hye-Wuk, Jung
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.175-180
    • /
    • 2022
  • To develop computational thinking skills, university students are learning how to solve problems with algorithms, program commands and grammar, and program writing. Because non-computer majors have difficulty with computer programming-related content, they need a learning method to acquire coding knowledge from the process of understanding, interpreting, changing, and improving source codes by themselves. This study explored clone coding, refactoring coding, and coding methods using reconstruction tools, which are practical and effective learning methods for improving coding skills for students who are accustomed to coding. A coding learning process with the code reconstruction principle was designed to help non-computer majors use it to understand coding technology and develop their problem-solving ability and applied the coding technology learning method used in programmer education.

A Study on Reconstruction Vulnerability of Daugman's Iriscode

  • Youn, Soung-Jo;Anusha, B.V.S;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.35-40
    • /
    • 2019
  • In this paper, we propose a technique to reconstruct the iris image from the iris code by analyzing the process of generating the iris code and calculating it inversely. Iris recognition is an authentication method for authenticating an individual's identity by using iris information of an eye having unique information of an individual. The iris recognition extracts the features of the iris from the iris image, creates the iris code, and determines whether to authenticate using the corresponding code. The iris recognition method using the iris code is a method proposed by Daugman for the first time and is widely used as a representative method of iris recognition technology currently used commercially. In this paper, we restore the iris image with only the iris code, and test whether the reconstructed image and the original image can be recognized, and analyze restoration vulnerability of Daugman's iris code.

Sparse Representation based Two-dimensional Bar Code Image Super-resolution

  • Shen, Yiling;Liu, Ningzhong;Sun, Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2109-2123
    • /
    • 2017
  • This paper presents a super-resolution reconstruction method based on sparse representation for two-dimensional bar code images. Considering the features of two-dimensional bar code images, Kirsch and LBP (local binary pattern) operators are used to extract the edge gradient and texture features. Feature extraction is constituted based on these two features and additional two second-order derivatives. By joint dictionary learning of the low-resolution and high-resolution image patch pairs, the sparse representation of corresponding patches is the same. In addition, the global constraint is exerted on the initial estimation of high-resolution image which makes the reconstructed result closer to the real one. The experimental results demonstrate the effectiveness of the proposed algorithm for two-dimensional bar code images by comparing with other reconstruction algorithms.

Development of an Electrical Capacitance Tomography Code for Analysis of Two-Phase Flow in the Rectangular Pipe (사각관 이상유동 분석을 위한 전기적 캐패시턴스 토모그라피 코드 개발)

  • Lee, Kyoung-Hwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.87-94
    • /
    • 2005
  • A computer code for Electrical Capacitance Tomography (ECT) is developed to sense the cross sectional phase distribution of two-phase flow in the rectangular pipe in which the tomography sensor furnished by the insulated wall, electrodes, and electric field screen. The computer code had two steps for the image reconstruction. In the forward projection step, the sensitivity matrix was constructed based on the electric field calculated by the finite difference method. In the backward projection step, the sensitivity matrix and the measured capacitances were used to reconstruct the cross sectional image. Several algorithms including LBP, TR, ITR, and PLI were employed to find the proper one for the two-phase flow analysis. Since the dielectric constant of the water in two-phase flow is sensitive to the thermal parameter such as, temperature and pressure, the developed code was evaluated to find their accuracy, speed of calculation, and sensitivity to the variation of the dielectric constant. It was found that the iterative methods are superior to the direct methods for the image reconstruction, and the PLI method was the best in the variation of the dielectric constants.

Research for development of our own image processing code for neutron tomography (중성자 토모그래피를 위한 영상처리 자체코드 개발 연구)

  • Kim, Jin Man;Kim, TaeJoo;Yu, Dong In
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • Neutron radiography has been widely used in many research areas due to its different characteristics from X-rays. Neutron tomography is a powerful tool because it can clearly show the inside of an object that the eye cannot see. However, generally, commercial software is used for the reconstruction of neutron tomography. It means that maintenance costs are incurred and analysis is inefficient in some cases. In this respect, our own image processing code is required to reconstruct neutron images efficiently. In this study, an image processing code is developed for reconstruction of cross-sectional images from neutron radiography taken from the side of the object. Using the developed code, cross-sectional images of the sample are successfully reconstructed.

PARALLEL IMAGE RECONSTRUCTION FOR NEW VACUUM SOLAR TELESCOPE

  • Li, Xue-Bao;Wang, Feng;Xiang, Yong Yuan;Zheng, Yan Fang;Liu, Ying Bo;Deng, Hui;Ji, Kai Fan
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.2
    • /
    • pp.43-47
    • /
    • 2014
  • Many advanced ground-based solar telescopes improve the spatial resolution of observation images using an adaptive optics (AO) system. As any AO correction remains only partial, it is necessary to use post-processing image reconstruction techniques such as speckle masking or shift-and-add (SAA) to reconstruct a high-spatial-resolution image from atmospherically degraded solar images. In the New Vacuum Solar Telescope (NVST), the spatial resolution in solar images is improved by frame selection and SAA. In order to overcome the burden of massive speckle data processing, we investigate the possibility of using the speckle reconstruction program in a real-time application at the telescope site. The code has been written in the C programming language and optimized for parallel processing in a multi-processor environment. We analyze the scalability of the code to identify possible bottlenecks, and we conclude that the presented code is capable of being run in real-time reconstruction applications at NVST and future large aperture solar telescopes if care is taken that the multi-processor environment has low latencies between the computation nodes.

COMPUTATIONS ON FLOW FIELDS AROUND A 3D FLAPPING PLATE USING THE HYBRID CARTESIAN/IMMERSED BOUNDARY METHOD (HCIB 법을 이용한 변형하는 평판 주위의 3차원 유동해석)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • A code is developed using the hybrid Cartesian/immersed boundary method and it is applied to simulate flows around a three-dimensional deforming body. A new criterion is suggested to distribute the immersed boundary nodes based on edges crossing a body boundary. Velocities are reconstructed at the immersed boundary nodes using the interpolation along a local normal line to the boundary. Reconstruction of the pressure at the immersed boundary node is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other experimental and numerical results for the velocity profiles around a circular cylinder under the forced in-line oscillation and the pressure coefficient distribution on a sphere. The code is applied to simulate the flow fields around a plate whose tail is periodically flapping under a translation. The effects of the velocity and acceleration due to the deformation on the periodic shedding of pairs of tip vortices are investigated.

SCATTERING CORRECTION FOR IMAGE RECONSTRUCTION IN FLASH RADIOGRAPHY

  • Cao, Liangzhi;Wang, Mengqi;Wu, Hongchun;Liu, Zhouyu;Cheng, Yuxiong;Zhang, Hongbo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.529-538
    • /
    • 2013
  • Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.