• Title/Summary/Keyword: Code Propagation

Search Result 294, Processing Time 0.026 seconds

Development of Ignitor of Open-Type Propulsion Device for Korean Interceptor (대응탄 개방형 추진장치용 점화기개발)

  • Kwon, Soon-Kil;Kim, Chang-Kee;Yun, Sang-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1166-1170
    • /
    • 2011
  • For developing the ignition device for the interceptor of Korean active protection system, the design parameters of the ignition device which should have a short ignition delay time and sufficient energy for propellant ignition were studied. The electric primer instead of mechanical primer was adopted for deceasing delay time, and ignition code was used for decreasing the time difference of flame propagation from the flame holes. The developed ignition device showed the ignition delay time of a few ms. When the designed ignition device was applied to the open-type propulsion devices, the stable interior ballistic characteristic was showed in a firing test.

Numerical simlation of nanosecond pulsed laser ablation in air (대기중 나노초 펄스레이저 어블레이션의 수치계산)

  • 오부국;김동식
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

Implementing a Verified Efficient RUP Checker

  • Oe, Duckki
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.1176-1179
    • /
    • 2012
  • To ensure the correctness of high performance satisfiability (SAT) solvers, several proof formats have been proposed. SAT solvers can report a formula being unsatisfiable with a proof, which can be independently verified by a trusted proof checker. Among the proof formats accepted at the SAT competition, the Reverse Unit Propagation (RUP) format is considered the most popular. However, the official proof checker was not efficient and failed to check many of the proofs at the competition. This inefficiency is one of the drawbacks of SAT proof checking. In this paper, I introduce a work-in-progress project, vercheck to implement an efficient RUP checker using modern SAT solving techniques. Even though my implementation is larger and more complex, the level of trust is preserved by statically verifying the correctness of the code. The vercheck program is written in GURU, a dependently typed functional programming language with a low-level resource management feature.

A Study on Measurement of Laminar Burning Velocity and Markstein Length of SNG Fuel in Spherical Propagation Flame (구형 전파화염에서 SNG 연료의 층류연소속도와 마크스타인 길이 측정에 관한 연구)

  • SONG, JUNHO;LEE, KEEMAN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.67-75
    • /
    • 2019
  • An experimental study was conducted to measure laminar burning velocity and Markstein length of SNG fuel with 3% of hydrogen contents from spherical propagating flames at normal and elevated initial pressure. These results were compared with numerical calculations by Premix code with GRI-mech 3.0, USC II and UC San Diego to provide suitable mechanism for SNG fuel. As a result of this work, it was found that the burning velocities and Markstein lengths of SNG fuel decrease with increase of initial pressure regardless of equivalence ratio. In addition, numerical calculations with GRI-mech 3.0 were coincided with experimental results.

SPH simulation of solitary wave interaction with coastal structures

  • Cai, Guozhen;Luo, Min;Wei, Zhaoheng;Khayyer, Abbas
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.285-300
    • /
    • 2022
  • This paper adopts the Smoothed Particle Hydrodynamics (SPH) open-source code SPHinXsys to study the solitary wave interaction with coastal structures. The convergence properties of the model in terms of particle size and smoothing length are tested based on the example of solitary wave propagation in a flat-bottom wave flume. After that, the solitary wave interactions with a suspended submerged flat plate and deck with girders are studied. The wave profile and velocity field near the surface of the structures, as well as the wave forces exerted onto the structures are analyzed.

Study of the fracture behavior of different structures by the extended finite element method (X-FEM)

  • Zagane Mohammed El Sallah;Moulgada Abdelmadjid;Sahli Abderahmane;Baltach Abdelghani;Benouis Ali
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.273-286
    • /
    • 2023
  • The fracture mechanics make it possible to characterize the behavior with cracking of structures using parameters quantifiable in the sense of the engineer, in particular the stress field, the size of the crack, and the resistance to cracking of the material. Any structure contains defects, whether they were introduced during the production of the part (machining or molding defects for example). The aim of this work is to determine numerically by the finite element method the stress concentration factor Kt of a plate subjected to a tensile loading containing a lateral form defect with different sizes: a semicircle of different radii, a notch with different opening angles and a crack of different lengths. The crack propagation is then determined using the extended finite element technique (X-FEM). The modeling was carried out using the ABAQUS calculation code.

A Numerical Study on the Fracture Evolution and Damage at Rock Pillar Near Deposition Holes for Radioactive Waste (방사성폐기물 처분공 주변 암주에서의 균열 진전 및 손상에 대한 수치해석적 연구)

  • 이희석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.211-221
    • /
    • 2003
  • At Aspo hard rock laboratory in Sweden, an in-situ heater experiment called "$\"{A}"{s}"{p}"{o}$ Pillar Stability Experiment (APSE)" is prepared to assess capability to predict spatting and stability in a rock mass between deposition holes for radioactive waste. To Predict reasonably fracturing process at rock pillar under a planned configuration before testing, a boundary element code FRACOD has been applied for modelling. The code has been improved to simulate explicitly fracture evolution both at rock boundaries and in intact rocks. A new inverse stress reconstruction technique using boundary element has been also developed to transfer stress field by excavation and thermal loading into the FRACOD model. This article presents the results from predictive modelling far the planned in-situ test condition. Excavation induced stresses might cause slight fracturing in the pillar walls. Typical shear fractures have been initiated and propagated near central pillar walls during 120 days of heating, but overall rock mass remained stable under the considered configuration. The effects of pre-existing joints and properties of fractures are also discussed. It is found from the results that FRACOD can properly model essential rock spatting and propagation at deep tunnels and boreholes.at deep tunnels and boreholes.

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

Detonation Wave Simulation of Thermally Cracked JP-7 Fuel/Oxygen Mixture using Induction Parameter Modeling (Induction Parameter Modeling을 이용한 열 분해된 JP-7 연료 /산소 혼합기의 데토네이션 파 해석)

  • Cho, Deok-Rae;Shin, Jae-Ryul;Choi, Jeong-Yeol;Yang, Vigor
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • The detonation wave characteristics of JP-7 and oxygen mixture is investigated by one-step induction parameter model (IPM) obtained from a detailed chemistry mechanism. A general procedure of obtaining reliable one-step kinetics IPM for hydrocarbon mixture from the fully detailed chemistry is described in this study. The IPM is obtained by the reconstruction of the induction time database obtained from a detailed kinetics library. The IPM was confirmed by the comparison of the induction time calculations with that from detailed kinetics. The IPM is later implemented to a fluid dynamics code and applied for the numerical simulation of detonation wave propagation. The numerical results show the detailed characteristics of the detonation wave propagation in JP-7 and oxygen mixture at affordable computing time, which is not be possible by the direct application of the detailed chemical kinetics mechanism of hydrocarbon fuel combustion.

Determination of dielectric property of subsurface by dispersive guided GPR wave (레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.25-30
    • /
    • 2006
  • When wet soil overlies dry soil, which can be found in the infiltration test, the radar wave is not attenuated and guided within wet soil layer. This phenomenon is known to be the dispersive guided wave and happens when the thickness of upper wet layer is less than or comparable to the wavelength of radar wave. In this study, we have conducted the FDTD modeling and obtained the velocity dispersion curve to identify the dispersive guided wave through F-K analysis. This guided wave can be explained by modal propagation theory and a simple inversion code was developed to obtain the two layer's dielectric constants as well as layer thickness. By inverting the dispersion curve from synthetic modeling data, we could obtain the accurate dielectric constants and layer thickness. Moreover, we could enhance the accuracy by including the higher mode data. We expect this method will be very useful to get the quantitative property of subsurface when the condition is similar.

  • PDF