DOI QR코드

DOI QR Code

SPH simulation of solitary wave interaction with coastal structures

  • Cai, Guozhen (Ocean College, Zhejiang University) ;
  • Luo, Min (Ocean College, Zhejiang University) ;
  • Wei, Zhaoheng (Ocean College, Zhejiang University) ;
  • Khayyer, Abbas (Department of Civil and Earth Resources Engineering, Kyoto University)
  • Received : 2022.08.02
  • Accepted : 2022.09.12
  • Published : 2022.09.25

Abstract

This paper adopts the Smoothed Particle Hydrodynamics (SPH) open-source code SPHinXsys to study the solitary wave interaction with coastal structures. The convergence properties of the model in terms of particle size and smoothing length are tested based on the example of solitary wave propagation in a flat-bottom wave flume. After that, the solitary wave interactions with a suspended submerged flat plate and deck with girders are studied. The wave profile and velocity field near the surface of the structures, as well as the wave forces exerted onto the structures are analyzed.

Keywords

Acknowledgement

The authors would like to express their sincere gratitude to the anonymous reviewers for the insightful and constructive comments that definitely helped in improving the paper. The authors are also grateful to Dr. Chi Zhang (Technical University of Munich) and Ms. Yaru Ren (Sichuan University) for their insightful comments. This research was supported by the start-up funding provided by Zhejiang University to the corresponding author.

References

  1. Amicarelli, A., Manenti, S., Albano, R., Agate, G., Paggi, M., Longoni, L., Mirauda, D., Ziane, L., Viccione, G., Todeschini, S., Sole, A., Baldini, L.M., Brambilla, D., Papini, M., Khellaf, M.C., Tagliafierro, B., Sarno, L. and Pirovano, G. (2020), "SPHERA v.9.0.0: A Computational Fluid Dynamics research code, based on the Smoothed Particle Hydrodynamics mesh-less method", Comput. Phys. Commun., 250, 107157. https://doi.org/10.1016/j.cpc.2020.107157.
  2. Anbarsooz, M., Passandideh-Fard, M. and Moghiman, M. (2013), "Fully nonlinear viscous wave generation in numerical wave tanks", Ocean Eng., 59, 73-85. https://doi.org/10.1016/j.oceaneng.2012.11.011.
  3. Chow, A.D., Stansby, P.K., Rogers, B.D., Lind, S.J. and Fang, Q. (2022), "Focused wave interaction with a partially-immersed rectangular box using 2-D incompressible SPH on a GPU comparing with experiment and linear theory", Eur. J. Mech. - B/Fluid., 95, 252-275. https://doi.org/10.1016/j.euromechflu.2022.05.007.
  4. Dominguez, J.M., Fourtakas, G., Altomare, C., Canelas, R.B., Tafuni, A., Garcia-Feal, O., Martinez-Estevez, I., Mokos, A., Vacondio, R. and Crespo, A.J. (2021), "DualSPHysics: from fluid dynamics to multiphysics problems", Comput. Particle Mech., 1-29. https://doi.org/10.1007/s40571-021-00404-2.
  5. Farhadi, A., Ershadi, H., Emdad, H. and Goshtasbi Rad, E. (2016), "Comparative study on the accuracy of solitary wave generations in an ISPH-based numerical wave flume", Appl. Ocean Res., 54, 115-136. https://doi.org/10.1016/j.apor.2015.11.003.
  6. Goring, D.G. (1978), Tsunamis--the propagation of long waves onto a shelf. California Institute of Technology.
  7. Gotoh, H., Khayyer, A. and Shimizu, Y. (2021), "Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering-Reliability, adaptivity and generality", Appl. Ocean Res., 115, 102822. https://doi.org/10.1016/j.apor.2021.102822.
  8. Hayatdavoodi, M., Seiffert, B. and Ertekin, R.C. (2014), "Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part II: Deck with girders", Coast. Eng., 88, 210-228. https://doi.org/10.1016/j.coastaleng.2014.02.007.
  9. Herault, A., Bilotta, G. and Dalrymple, R.A. (2010), "SPH on GPU with CUDA", J. Hydraul. Res., 48(1), 74-79. https://doi.org/10.1080/00221686.2010.9641247
  10. Kazemi, E. and Luo, M. (2022), "A comparative study on the accuracy and conservation properties of the SPH method for fluid flow interaction with porous media", Adv. Water Resour., 165, 104220. https://doi.org/10.1016/j.advwatres.2022.104220.
  11. Khayyer, A. and Gotoh, H. (2011), "Enhancement of stability and accuracy of the moving particle semi-implicit method", J. Comput. Phys., 230(8), 3093-3118. https://doi.org/10.1016/j.jcp.2011.01.009.
  12. Khayyer, A., Gotoh, H. and Shimizu, Y. (2022), "On systematic development of FSI solvers in the context of particle methods", J. Hydrodynam., 34, 395-407. https://doi.org/10.1007/s42241-022-0042-3.
  13. Koshizuka, S., Nobe, A. and Oka, Y. (1998), "Numerical analysis of breaking waves using the moving particle semi-implicit method", Int. J. Numer. Meth. Fl., 26(7), 751-769. https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C.
  14. Luo, M., Khayyer, A. and Lin, P. (2021), "Particle methods in ocean and coastal engineering", Appl. Ocean Res., 114, 102734. https://doi.org/10.1016/j.apor.2021.102734.
  15. Luo, M., Koh, C.G., Bai, W. and Gao, M. (2016), "A particle method for two-phase flows with compressible air pocket", Int. J. Numer. Meth. Fl., 108(7), 695-721. https://doi.org/10.1002/nme.5230.
  16. Luo, M., Reeve, D.E., Shao, S., Karunarathna, H., Lin, P. and Cai, H. (2019), "Consistent Particle Method simulation of solitary wave impinging on and overtopping a seawall", Eng. Anal. Bound. Elem., 103, 160-171. https://doi.org/10.1016/j.enganabound.2019.03.012.
  17. Luo, M., Su, X., Lin, P., Khayyer, A. and Zhao, X. (2022), "Investigation of two-layer liquid sloshing by using the Consistent Particle Method", Int. J. Offshore Polar Eng., 32(1), 7-15. https://doi.org/10.17736/ijope.2022.jc848.
  18. Lyu, H.G., Sun, P.N., Miao, J.M. and Zhang, A.M. (2022), "3D multi-resolution SPH modeling of the water entry dynamics of free-fall lifeboats", Ocean Eng., 257, 111648. https://doi.org/10.1016/j.oceaneng.2022.111648.
  19. Ma, Q. (2005), "Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems", J. Comput. Phys., 205(2), 611-625. https://doi.org/10.1016/j.jcp.2004.11.010.
  20. Monaghan, J.J. (1994), "Simulating free surface flows with SPH", J. Comput. Phys., 110(2), 399-406. https://doi.org/10.1006/jcph.1994.1034.
  21. Pringgana, G., Cunningham, L.S. and Rogers, B.D. (2021), "Influence of orientation and arrangement of structures on Tsunami impact forces: numerical investigation with smoothed particle hydrodynamics", J. Waterw. Port Coast. Ocean Eng., 147(3), 04021006. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000629.
  22. Randles, P. and Libersky, L.D. (1996), "Smoothed particle hydrodynamics: some recent improvements and applications", Comput. Method. Appl. M., 139(1-4), 375-408. https://doi.org/10.1016/S0045-7825(96)01090-0.
  23. Seiffert, B., Hayatdavoodi, M. and Ertekin, R.C. (2014), "Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I: Flat Plate", Coast. Eng., 88, 194-209. https://doi.org/10.1016/j.coastaleng.2014.01.005.
  24. Shao, S. and Lo, E.Y.M. (2003), "Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface", Adv. Water Resour., 26(7), 787-800. https://doi.org/10.1016/S0309-1708(03)00030-7.
  25. Shimizu, Y., Khayyer, A. and Gotoh, H. (2022), "An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity", Ocean Syst. Eng., 12(1), 63-86. https://doi.org/10.12989/ose.2022.12.1.063.
  26. Sriram, V. and Ma, Q.W. (2021), "Review on the local weak form-based meshless method (MLPG): Developments and applications in ocean engineering", Appl. Ocean Res., 116, 102883. https://doi.org/10.1016/j.apor.2021.102883.
  27. Tripepi, G., Aristodemo, F., Meringolo, D.D., Gurnari, L. and Filianoti, P. (2020), "Hydrodynamic forces induced by a solitary wave interacting with a submerged square barrier: Physical tests and δ-LES-SPH simulations", Coast. Eng., 158, 103690. https://doi.org/10.1016/j.coastaleng.2020.103690.
  28. Wang, L., Jiang, Q. and Zhang, C. (2020), "Numerical simulation of solitary waves overtopping on a sloping sea dike using a particle method", Wave Motion, 95, 102535. https://doi.org/10.1016/j.wavemoti.2020.102535.
  29. Wei, Z. and Dalrymple, R.A. (2016), "Numerical study on mitigating tsunami force on bridges by an SPH model", J. Ocean Eng. Mar. Energy, 2(3), 365-380. https://doi.org/10.1007/s40722-016-0054-6.
  30. Wendland, H. (1995), "Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree", Adv. Comput. Math., 4(1), 389-396. https://doi.org/10.1007/BF02123482.
  31. Xu, G. and Cai, C.S. (2015), "Numerical simulations of lateral restraining stiffness effect on bridge deck-wave interaction under solitary waves", Eng. Struct., 101, 337-351. https://doi.org/10.1016/j.engstruct.2015.07.031.
  32. Zhang, C., Hu, X.Y. and Adams, N.A. (2017), "A weakly compressible SPH method based on a low-dissipation Riemann solver", J. Comput. Phys., 335, 605-620. https://doi.org/10.1016/j.jcp.2017.01.027.
  33. Zhang, C., Rezavand, M., Zhu, Y., Yu, Y., Wu, D., Zhang, W., Wang, J. and Hu, X. (2021a), "SPHinXsys: An open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics", Comput. Phys. Commun., 267, 108066. https://doi.org/10.1016/j.cpc.2021.108066.
  34. Zhang, C., Wei, Y., Dias, F. and Hu, X. (2021b), "An efficient fully Lagrangian solver for modeling wave interaction with oscillating wave surge converter", Ocean Eng., 236, 109540. https://doi.org/10.1016/j.oceaneng.2021.109540.