• Title/Summary/Keyword: Code Optimization

Search Result 589, Processing Time 0.029 seconds

Copy Propagation in CTOC (CTOC에서 복사 전파)

  • Kim, Ki-Tae;Kim, Je-Min;Yoo, Won-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.1-8
    • /
    • 2007
  • Although the Java bytecode has numerous advantages. there ate also shortcomings such as slow execution speed and difficulty in analysis. Therefore. in order for the Java class file to be effectively executed under the execution environment such as the network, it is necessary to convert it into optimized code. We implements CTOC. CTOC generated CFG using the existing bytecode then created the SSA Form for analysis and optimization. However. due to insertion or the ${\phi}$-function in the process of conversion into the SSA Form, the number of nodes increased. As a means of reducing the number of nodes, we performed copy propagation, which is an optimization method applicable to the SSA form. Copy propagation is the process of a value of a variable being topied to another variable. There are cases where conversion due to copy propagation alone does not yield significant effects. However, when variables are not used in the later optimization stages, copy propagation provides a means for eliminating the copy statement for the corresponding variable, making it an important step. This paper shows the copy propagation to obtain a more optimized code in SSA Form.

  • PDF

Profile Guided Selection of ARM and Thumb Instructions at Function Level (함수 수준에서 프로파일 정보를 이용한 ARM과 Thumb 명령어의 선택)

  • Soh Changho;Han Taisook
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.227-235
    • /
    • 2005
  • In the embedded system domain, both memory requirement and energy consumption are great concerns. To save memory and energy, the 32 bit ARM processor supports the 16 bit Thumb instruction set. For a given program, the Thumb code is typically smaller than the ARM code. However, the limitations of the Thumb instruction set can often lead to generation of poorer quality code. To generate codes with smaller size but a little slower execution speed, Krishnaswarmy suggests a profiling guided selection algorithm at module level for generating mixed ARM and Thumb codes for application programs. The resulting codes of the algorithm give significant code size reductions with a little loss in performance. When the instruction set is selected at module level, some functions, which should be compiled in Thumb mode to reduce code size, are compiled to ARM code. It means we have additional code size reduction chance. In this paper, we propose a profile guided selection algorithm at function level for generating mixed ARM and Thumb codes for application programs so that the resulting codes give additional code size reductions without loss in performance compared to the module level algorithm. We can reduce 2.7% code size additionally with no performance penalty

On the Application and Optimization of M-ary Transmission Techniques to Optical CDMA LANs (Optical CDMA 근거리망을 위한 M-진 전송기술에 대한 연구)

  • 윤용철;최진우;김영록
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1086-1103
    • /
    • 2004
  • Most research efforts on the OCDMA technology assume single-bit-per-symbol transmission techniques such as on-off keying. However, achieving high spectral efficiency with such transmission techniques is likely to be a challenging task due to the "unipolar" nature of optical signals. In this paper, an M-ary transmission technique using more than two equally-weighted codes is proposed for OCDMA local area networks, and ie BER performance and spectral efficiency are analyzed. Poison frame arrival and randomly generated codes are assumed for the BER analysis, and the probability of incorrect symbol detection is analytically derived. From the approximation, it is found that there exists an optimal code weight that minimizes the BER, and its physical interpretation is drawn in an intuitive and simple statement. Under the assumption of this optimized code weight and sufficiently large code dimension, it is also shown that the spectral efficiency of OCDMA networks can be significantly improved by increasing the number (M) of symbols used. Since the cost of OCDMA transceivers is expected to increase with the code dimension, we finally provide a guideline to determine the optimal number of symbols for a given code dimension and traffic load.

A Rule-based Optimal Placement of Scaling Shifts in Floating-point to Fixed-point Conversion for a Fixed-point Processor

  • Park, Sang-Hyun;Cho, Doo-San;Kim, Tae-Song;Paek, Yun-Heung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.234-239
    • /
    • 2006
  • In the past decade, several tools have been developed to automate the floating-point to fixed-point conversion for DSP systems. In the conversion process, a number of scaling shifts are introduced, and they inevitably alter the original code sequence. Recently, we have observed that a compiler can often be adversely affected by this alteration, and consequently fails to generate efficient machine code for its target processor. In this paper, we present an optimization technique that safely migrates scaling shifts to other places within the code so that the compiler can produce better-quality code. We consider our technique to be safe in that it does not introduce new overflows, yet preserving the original SQNR. The experiments on a commercial fixed-point DSP processor exhibit that our technique is effective enough to achieve tangible improvement on code size and speed for a set of benchmarks.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

AERODYNAMIC OPTIMIZATION OF SUPERSONIC WING-NACELLE CONFIGURATION USING AN UNSTRUCTURED ADJOINT METHOD

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.60-65
    • /
    • 2000
  • An aerodynamic design method has been developed by using a three-dimensional unstructured Euler code and an adjoint code with a discrete approach. The resulting adjoint code is applied to a wing design problem of super-sonic transport with a wing-body-nacelle configuration. Hicks-Henne shape functions are adopted far the surface geometry perturbation, and the elliptic equation method is employed fer the interior grid modification during the design process. Interior grid sensitivities are neglected except those for design parameters associated with nacelle translation. The Sequential Quadratic Programming method is used to minimize the drag with constraints on the lift and airfoil thickness. Successful design results confirm validity and efficiency of the present design method.

  • PDF

Optimization of a Systolic Array BCH encoder with Tree-Type Structure

  • Lim, Duk-Gyu;Shakya, Sharad;Lee, Je-Hoon
    • International Journal of Contents
    • /
    • v.9 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • BCH code is one of the most widely used error correcting code for the detection and correction of random errors in the modern digital communication systems. The conventional BCH encoder that is operated in bit-serial manner cannot adequate with the recent high speed appliances. Therefore, parallel encoding algorithms are always a necessity. In this paper, we introduced a new systolic array type BCH parallel encoder. To study the area and speed, several parallel factors of the systolic array encoder is compared. Furthermore, to prove the efficiency of the proposed algorithm using tree-type structure, the throughput and the area overhead was compared with its counterparts also. The proposed BCH encoder has a great flexibility in parallelization and the speed was increased by 40% than the original one. The results were implemented on synthesis and simulation on FPGA using VHDL.

A Sparse Code Motion for Redundancy Code Elimination in Code Optimization (코드 최적화에서 중복코드 제거를 위한 희소코드모션에 관한 연구)

  • Yu, Heui-Jong;Shin, Hyun-Deok;Lee, Dae-Sik;Sim, Son-Kweon;Jang, Jae-Chun;Ahn, Heui-Hak
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.321-324
    • /
    • 2003
  • 본 논문에서는 코드 최적화를 위하여 계산적으로나 수명적으로 제한이 없는 희소 코드 모션 알고리즘을 제안한다. 이 알고리즘은 지나친 레지스터의 사용을 막기 위하여 불필요한 코드 모션을 억제한다. 또한, 본 논문에서는 기존 알고리즘의 술어의 의미가 명확하지 않은 것을 개선하였고 노드 단위 분석과 명령어 단위 분석을 혼용했기 때문에 발생하는 모호함도 개선하였다. 따라서, 제안한 알고리즘은 불필요하게 중복된 수식이나 배정문의 수행을 피하게 함으로써, 프로그램의 불필요한 재계산이나 재실행을 하지 않게 하여 프로그램의 능률 및 실행시간을 향상시킨다.

  • PDF

Development of Evaluation Method and Experimental Verification of a 300kW Small Engine Cogeneration System (300kW급 소형 엔진 열병합발전시스템의 평가기술 개발 및 실증시험)

  • Choi, Jae-Joon;Park, Hwa-Choon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.453-458
    • /
    • 2007
  • The importance of the evaluation and verification of small-size cogeneration system has been emphasized because there is no KS-code related to the small-size cogeneration system. The evaluation method of small-size engine cogeneration system was investigated by the reference of Japan evaluation code, JIS B-8122 and international standard organization, ISO-8528. Evaluation method was introduced such as start-test, rapid-load-up and rapid-load-down, etc. The evaluation method was applied to the 300kW small-size gas engine cogeneration system newly developed. The precise and strict evaluation and verification of the system will help the developing cogeneration system to optimum condition. It will also be a base document of KS-Code.

  • PDF

Performance Based Design of Passive Fire Protection Using Consequence Analysis (사고 영향 분석을 이용한 성능위주의 내화설계)

  • Han, Dong-Hoon;Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.102-107
    • /
    • 2004
  • Performance based design is a recent evolutionary step in the process of designing fire protection systems. In essence, it is a logical design process resulting in a solution that achieves a specified performance. Sometimes the prescriptive solutions presented in various codes and standards are too expensive or inflexible. Often the solutions do not and enables optimization of a solution for cost and function. In this study, performance based design was carried out to determine the extent of passive fire protection for oil terminal facilities. The results of performance based design were compared with those of prescriptive code based design. Performance based design is not always more economic than prescriptive code based design but provides more reliable and effective design that is fit for the purpose.