• Title/Summary/Keyword: Code Compression

Search Result 428, Processing Time 0.03 seconds

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

Progressive collapse resistance of low and mid-rise RC mercantile buildings subjected to a column failure

  • Demir, Aydin
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.563-576
    • /
    • 2022
  • This study aimed to evaluate the progressive collapse potential of buildings designed using conventional design codes for the merchant occupancy classification and subjected to a sudden column failure. For this purpose, three reinforced concrete buildings having different story numbers were designed according to the seismic design recommendations of TSCB-2019. Later on, the buildings were analyzed using the GSA-2016 and UFC 4-023-03 to observe their progressive collapse responses. Three columns were removed independently in the structures from different locations. Nonlinear dynamic analysis method for the alternate path direct design approach was implemented for the design evaluation. The plasticity of the structural members was simulated by using nonlinear fiber hinges. The moment, axial, and shear force interaction on the hinges was considered by the Modified Compression Field Theory. Moreover, an existing experimental study investigating the progressive collapse behavior of reinforced concrete structures was used to observe the validation of nonlinear fiber hinges and the applied analysis methodology. The study results deduce that a limited local collapse disproportionately more extensive than the initial failure was experienced on the buildings designed according to TSCB-2019. The mercantile structures designed according to current seismic codes require additional direct design considerations to improve their progressive collapse resistance against the risk of a sudden column loss.

A New Image Coding Technique with Low Entropy

  • Joo, S.H.;H.Kikuchi;S.Sasaki;Shin, J.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.189-194
    • /
    • 1998
  • We introduce a new zerotree scheme that effectively exploits the inter-scale self-similarities found in the octave decomposition by a wavelet transform. A zerotree is useful to efficiently code wavelet coefficients and its efficiency was proved by Shapiro's EZW. In the coding scheme, wavelet coefficients are symbolized and entropy-coded for more compression. The entropy per symbol is determined from the produced symbols and the final coded size is calculated by multiplying the entropy and the total number of symbols. In this paper, were analyze produced symbols from the EZW and discuss the entropy per symbol. Since the entropy depends on the produced symbols, we modify the procedure of symbolic streaming out for the purpose. First, we extend the relation between a parent and children used in the EZW to raise a probability that a significant parent has significant children. The proposed relation is flexibly extended according to the fact that a significant coefficient is highly addressed to have significant coefficients in its neighborhood. The extension way is reasonable because an image is decomposed by convolutions with a wavelet filter and thus neighboring coefficients are not independent with each other.

  • PDF

Study on energy dissipation mechanism of cross-shaped BRB with built-up angle steel

  • Yanmin Yang;Ying Xiong;Peng Wang;Xiangkun Meng;Tianyuan Cai
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.113-123
    • /
    • 2023
  • A novel type of buckling restrained brace with built-up angle steel was developed. The core segment was formed by welding angle steel, and the middle section was reduced by cutting technology to solve the problem that the end of BRB was easy to buckle. The experimental program has been undertaken to study the performance of BRBs with different unbonded materials (silica gel, kraft paper) and different filler materials (ordinary concrete, full light-weight concrete). Four specimens were designed and fabricated for low cycle reciprocating load tests to simulate horizontal seismic action. The failure mode, hysteretic curves, tension-compression unbalance coefficient and other mechanical parameters were compared and analyzed. The finite element software ABAQUS was used to conduct numerical simulation, and the simulation results were compared with the experimental phenomena. The test results indicated that the hysteretic curve of each specimen was plump. Sustaining cumulative strains of each specimen was greater than the minimum value of 200 required by the code, which indicated the ductility of BRB was relatively good. The energy dissipation coefficient of the specimen with silica gel as unbonded material was about 13% higher than that with kraft paper. The experimental results were in good agreement with the simulation results.

Rapid retrofit of substandard short RC columns with buckled longitudinal bars using CFRP jacketing

  • Marina L. Moretti
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.97-109
    • /
    • 2023
  • This experimental study investigates the effectiveness of applying carbon fiber reinforced polymer (CFRP) jackets for the retrofit of short reinforced concrete (RC) columns with inadequate transverse reinforcement and stirrup spacing to longitudinal rebar diameter equal to 12. RC columns scaled at 1/3, with round and square section, were subjected to axial compression up to failure. A damage scale is introduced for the assessment of the damage severity, which focusses on the extent of buckling of the longitudinal rebars. The damaged specimens were subsequently repaired with unidirectional CFRP jackets without any treatment of the buckled reinforcing bars and were finally re-tested to failure. Test results indicate that CFRP jackets may be effectively applied to rehabilitate RC columns (a) with inadequate transverse reinforcement constructed according to older practices so as to meet modern code requirements, and (b) with moderately buckled bars without the need of previously repairing the reinforcement bars, an application technique which may considerably facilitate the retrofit of earthquake damaged RC columns. Factors for the estimation of the reduced mechanical properties of the repaired specimens compared to the respective values for intact CFRP-jacketed specimens, in relation to the level of damage prior to retrofit, are proposed both for the compressive strength and the average modulus of elasticity. It was determined that the compressive strength of the retrofitted CFRP-jacketed columns is reduced by 90% to 65%, while the average modulus of elasticity is lower by 60% to 25% in respect to similar undamaged columns jacketed with the same layers of CFRP.

Assessment of structural behavior of reinforced concrete slab ceiling under full load test in a residential complex project

  • Jaffar A. Kadim;Oday A. Abdulrazzaq;Abdulamir A. Karim;Aqeel H. Chkheiwer
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.627-634
    • /
    • 2024
  • This research deals with the process of conducting a reinforced concrete slab loading test of a Residential Complex Project at the Shatt Al Arab District which is located in southern Iraq. The purpose of the test which represents a destructive test is to evaluate the structural behavior of the slab condition state during and after the examination of the test process in order to ascertain the ability of the slab ceiling to withstand the loads generated during the use of the building. The test was carried out accordant to ACI 437.2-13 code. The reason for this test is the postponed 8 years of building project construction. Concrete blocks were used to simulate and conduct a loading test of 30-tons for 3 days. The central point has been installed to measure the slab deflection that occurred during the test. The results showed that both the total deflection and residual deflections were lesser than the permissible values according to the ACI 437.2-13, the RC slab behavior was mainly linear structural behave, and that the purpose of the examination was achieved. Finally, a new method was introduced to the assessment of the slab condition at the support which is found in good condition.

DEM analysis of the anisotropy effects on the failure mechanism of the layered concretes' specimens with internal notches

  • Jinwei Fu;Vahab Sarfarazi;Hadi Haeri;Mohammad Fatehi Marji
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.659-670
    • /
    • 2024
  • The mechanical behaviour of layered concrete samples containing an internal crack was numerically studied by modelling the geo-mechanical specimens in the particle flow code in two dimensions (PFC2D). The numerical modelling software was calibrated with the experimental results of the Brazilian tensile strengths gained from the laboratory disc-type specimens. Then, the samples with the bedding layers and internal notch were numerically simulated with PFC2D under uniaxial compressive loading. In each specimen, the layers' thickness was 10 mm but the layer's inclination angle was changed to 0°, 30°, 60°, 90°, 120° and 150°. Of course, the layers'interfaces are considered to have very low strengths. The internal notch was kept at 3 cm in length however, its inclination angle was changed to 0°, 40°, 60° and 90°. Therefore, a total, of 24 numerical models were made to study the failure mechanism of the layered concrete samples. Considering these results, it has been concluded that the inclination angles of both internal crack and bedding layers affect the failure mechanism and uniaxial compressive strength of the concrete.

Digital Video Watermarking Based on SPIHT Coding Using Motion Vector Analysis (움직임 벡터 정보를 이용한 SPIHT 부호화 기반의 디지털 비디오 워터마킹)

  • Kwon, Seong-Geun;Hwang, Eui-Chang;Lee, Mi-Hee;Jeong, Tai-Il;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1427-1438
    • /
    • 2007
  • Video watermarking technologies are classified into types of four kinds. The first type is to embed the watermark into a raw video signal and to code the watermarked video signal. Most of video watermarking technologies fall into the category of this type. The second type is to apply watermarking to the coding process, such as block DCT and quantization. The third is to directly embed the watermark into the compressed bitstream itself. Generally, it is referred as labelling rather than watermarking. Finally, the fourth is to embed the water mark into MPEG motion vector. This type has the difficulty in real-time process because of the high complexity and has the blocking effects because of DCT-based on coder. In this paper, we proposed the digital video watermarking that embed the watermark in SPIHT video code for I-frame using motion vector analysis. This method can remove the blocking effect occurred at the DCT-based on coder and obtain video data that has progressive transmission property. The proposed method is to select the region for the watermark embedding in I frame using motion vector estimated from the previous P or B frame. And then, it is to perform DWT and embed the watermark based on HVS into the wavelet coefficients in the same subband of DWT as the motion vector direction. Finally, the watermarked video bitstream is obtained by the SPIHT coder. The experimental results verified that the proposed method has the invisibility from the objective and subjective image quality and the robustness against the various SPIHT compression and MPEG re-code.

  • PDF

Efficient Coding of Motion Vector and Mode Information for H.264/AVC (H.264/AVC에서 효율적인 움직임 벡터와 모드 정보의 압축)

  • Lee, Dong-Shik;Kim, Young-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1359-1365
    • /
    • 2008
  • The portion of header in H.264 gets higher than those of previous standards instead of its better compression efficiency. Therefore, this paper proposes a new technique to compress the header of H.264. Unifying a sentence elementary in H.264, H.264 does not consider the distribution of element which be encoded and uses existing Exp-Golomb method, but it is uneffective for variable length coding. Most of the header are block type(s) and motion vector difference(s), and there are redundancies in the header of H.264. The redundancies in the header of H.264 which are analyzed in this paper are three. There are frequently appearing symbols and non-frequently appearing symbols in block types. And when mode 8 is selected in macroblock, all of four sub-macroblock types are transferred. At last, same values come in motion vector difference, especially '0.' This paper proposes the algorithm using type code and quadtree, and with them presents the redundant information of header in H.264. The type code indicates shape of the macroblock and the quadtree does the tree structured motion compensation. Experimental results show that proposed algorithm achieves lower total number of encoded bits over JM12.4 up to 32.51% bit reduction.

  • PDF

A Proposal for an Evaluation of Flexural Resistance of Longitudinally Stiffened Plate Girder with Slender Web (수평보강재로 보강된 세장 복부판을 갖는 플레이트 거더의 휨강도 평가 방법의 제안)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.119-132
    • /
    • 2014
  • In this paper, a series of numerical analyses were performed to evaluate the flexural resistance of steel plate girder with longitudinally stiffened and slender web. The SM490 steel was adopted for the study and the flexural resistances evaluated from the numerical analysis were compared with those suggested by the AASHTO LRFD and the Eurocode 3 codes, respectively. It was found that the AASHTO LRFD code could considerably underestimate the flexural resistance as the web slenderness becomes smaller. This comes from the fact that current AASHTO LRFD code does not consider a possible increase of slenderness limits for compact and noncompct web, and also an additional effect of web restraint on the rotation of compression flange in longitudinally stiffened web. Therefore, the slenderness limits of web and flange have been newly proposed for the plate girders with longitudinally stiffened web and it is analytically verified that the flexural resistance can be appropriately estimated by applying the proposed slenderness limits to the AASHTO LRFD code.