• Title/Summary/Keyword: Code Compression

Search Result 428, Processing Time 0.022 seconds

Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement (전단 보강 슬래브-기둥 내부 접합부 및 기초판에 대한 뚫림 전단강도 모델)

  • Choi, Kyoung-Kyu;Kim, Sug-Hwan;Kim, Dong-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2011
  • In the present study, an improved design method was developed for the punching shear strength of interior slabcolumn connections and column footings with and without shear reinforcement. In the evaluation of the punching shear strength, the possible failure mechanisms of the connections and column footings were considered. The considered failures modes were inclined tensile cracking of concrete, yielding of shear re-bars, and concrete crushing of compression zone/strut. The punching shear applied to the concrete critical section was assumed to be resisted mainly by the compression zone. The punching shear strength of the concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal stress and shear stress. For verification of the proposed design method, its prediction was compared with the existing test results. The result showed that the proposed method predicted the strengths of the test specimens better than the current design methods of the KCI code for both the shear reinforced and unreinforced cases.

Video Data Compression using the MPEG-2 Video Algorithm (MPEG-2 비디오 알고리즘을 이용한 비디오 데이터 압축)

  • 남재열;이영선;이현주;김재곤;이상미;안치득
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1069-1082
    • /
    • 1993
  • The International Organization for Standardization(ISO) has undertaken an effort to develop a standard for video and associated audio on digital storage media. This effort is known by the name of the expert group that started if : MPEG-Moving Picture Experts Group Is currently part of the ISO-I EC/J TC1/SC2/WG11. The promise of MPEG-2 is that a video signal and its associated audio can be compressed to a bit rate of about 10 Mbits/s with an acceptable quality. In this paper, the implementation of a video compression simulator based on MPEG-2 Video Test Model 2(TM2) is described and analyzed according to the simulation results. The implemented simulator is also applied to code HDTV sequences at the several bit rates. Some computer simulation results using the MPEG and the HDTV test sequences are given. In addition, some techniques which can improve the coding efficiency of the implemented video compression simulator are also suggested.

  • PDF

Numerical Modeling of Large Triaxial Compression Test with Rockfill Material Considering 3D Grain Size Distribution (3차원 입도분포를 고려한 락필재료의 대형삼축압축시험 수치모델링)

  • Noh, Tae Kil;Jeon, Je Sung;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.55-62
    • /
    • 2012
  • In this research, the algorithm for simulating specific grain size distribution(GSD) with large diameter granular material was developed using the distinct element analysis program $PFC^{3D}$(Particle Flow Code). This modeling approach can generate the initial distinct elements without clump logic or cluster logic and prevent distinct element from escaping through the confining walls during the process. Finally the proposed distinct element model is used to simulate large triaxial compression test of the rockfill material and we compared the simulation output with lab test results. Simulation results of Assembly showed very well agreement with the GSD of the test sample and numerical modeling of granular material would be possible for various stress conditions using this application through the calibration.

Design of an Efficient Lossless CODEC for Wavelet Coefficients (웨이블릿 계수에 대한 효율적인 무손실 부호화 및 복호화기 설계)

  • Lee, Seonyoung;Kyeongsoon Cho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.335-344
    • /
    • 2003
  • The image compression based on discrete wavelet transform has been widely accepted in industry since it shows no block artifacts and provides a better image quality when compressed to low bits per pixel, compared to the traditional JPEG. The coefficients generated by discrete wavelet transform are quantized to reduce the number of code bits to represent them. After quantization, lossless coding processes are usually applied to make further reduction. This paper presents a new and efficient lossless coding algorithm for quantified wavelet coefficients based on the statistical properties of the coefficients. Combined with discrete wavelet transform and quantization processes, our algorithm has been implemented as an image compression chip, using 0.5${\mu}{\textrm}{m}$ standard cells. The experimental results show the efficiency and performance of the resulting chip.

A new pyramid structure for progressive transmission of palletized color images (팔레트를 가지는 칼라 영상의 점진적 전송을 위한 새로운 피라미드 자료 구조)

  • Jo, Yeong-U;Kim, Yeong-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1624-1635
    • /
    • 1996
  • Palletized color images are the dominant type of the image used on Internet and World-Wide Web. In spite of this, most image compression and progressive transmission algorithm have been designed for continuous-tone images. Pallettize images. Palletized images differ from continuous-tone images in such a aspect that values are lookup table indices a new pyramid structure for compression and progressive transmission of a palletized image. In the proposed pyramid structure, the color of a node at higher level is the one that occupies the most part in 4 sons and each node is represented by a type code and several color codes. Since the proposed method do not exploit spatial correlation in an image, it is ideally applied to lossless compression and progressive transmission of palletized images. We have confirmed this through the experimental results.

  • PDF

2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests

  • Vaziri, Mojtaba Rabiei;Tavakoli, Hossein;Bahaaddini, Mojtaba
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.117-133
    • /
    • 2022
  • Determination of the mechanical behaviour of jointed rock masses has been a challenge for rock engineers for decades. This problem is more pronounced for non-persistent jointed rock masses due to complicated interaction of rock bridges on the overall behaviour. This paper aims to study the effect of a non-persistent joint set configuration on the mechanical behaviour of rock materials under both uniaxial and biaxial compression tests using a discrete element code. The numerical simulation of biaxial compressive strength of rock masses has been challenging in the past due to shortcomings of bonded particle models in reproducing the failure envelope of rock materials. This problem was resolved in this study by employing the flat-joint contact model. The validity of the numerical model was investigated through a comprehensive comparative study against physical uniaxial and biaxial compression experiments. Good agreement was found between numerical and experimental tests in terms of the recorded peak strength and the failure mode in both loading conditions. Studies on the effect of joint orientation on the failure mode showed that four zones of intact, transition to block rotation, block rotation and transition to intact failure occurs when the joint dip angle varies from 0° to 90°. It was found that the applied confining stress can significantly alter the range of these zones. It was observed that the minimum strength occurs at the joint dip angle of around 45 degrees under different confining stresses. It was also found that the joint orientation can alter the post peak behaviour and the lowest brittleness was observed at the block rotation zone.

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee;Hossein Amoushahi;Mehrdad Hejazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.181-197
    • /
    • 2024
  • A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

A Method to Express Audio Binary Files by Color QR Codes and Its Application (오디오 바이너리 파일을 컬러 QR코드로 표현하는 방법과 그 응용)

  • Lee, Choong Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.47-53
    • /
    • 2018
  • This paper proposes a method to express an MP3 audio file by a series of color QR codes which can be printed on the paper. Moreover, the method can compress the data considerably. Firstly, an MP3 file is divided into many small files which have maximum capacity of binary file of a QR code. Secondly, the multiple files are converted to multiple black-and-white QR codes. Lastly, every three QR codes are combined into color QR codes. When combining, each of three black-and-white QR codes are regarded as red, green, blue components respectively. In this method, the areas of a color QR code where two QR codes are overlapped are expressed by the colors Cyan, Magenta and Yellow. And the areas where three components are overlapped are expressed by white color. Contrarily, the areas that no components are overlapped are expressed by white color. Experimentation result shows that an MP3 file with 8.5MB the original MP3 files are compressed with the compression rate around 15.7. This method has the advantage that can be used in the environments that the internet access is impossible.

An Efficient Decoding Technique for Huffman Code Using Tilted Huffman Trees (한쪽으로 기운 허프만 트리에서의 효율적인 허프만 복호 기법)

  • 김병한;임종석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1956-1969
    • /
    • 1993
  • The tilted Huffman trees are used in JPEG and MPEG image compression standards for Huffman coding. In this paper we propose a new decoding technique for Huffman code, symbols are decoded by repeatedly obtaining the predefined number of consecutive bits and accessing symbol tables based on the obtaining bits. We show that the size of the symbol table can be small if the Huffman tree is tilted. Specifically, we show an upper bound on the size in this paper. Since the proposed method processes multiple bits at each clock, it can be used for real time processing. We show such evaluation results.

  • PDF

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.