• Title/Summary/Keyword: Cocktail method

Search Result 48, Processing Time 0.022 seconds

Comparison of Gastrointestinal Permeability of Caffeine, Propranolol, Atenolol, Ofloxacin, and Quinidine Measured Using Ussing Chamber System and Caco-2 Cell Monolayer

  • Song, Im-Sook;Choi, Young A;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • v.8 no.2
    • /
    • pp.34-38
    • /
    • 2017
  • The purpose of this study was to develop a cocktail approach for the measurement of the permeability of marker compounds, caffeine and propranolol (high permeability), ofloxacin (intermediate), atenolol (low), and quinidine (P-glycoprotein substrate), simultaneously. Then we compared the permeability in Caco-2 cells with that in rat intestinal segments. The difference between individual measurement and cocktail approach was less than 20 %, and the permeabilities of these compounds were similar to those previously reported, suggesting that the cocktail transport study and simultaneous drug analysis were successfully developed and validated in this study. Additionally, in the application of this cocktail method, the permeability of five drugs in rat jejunum was similar to that in ileum but different from that in colon, which was measured using the Ussing chamber system. Moreover, permeability in jejunum and ileum was similar to that in Caco-2 cells. In conclusion, the permeability in Caco-2 cells was equivalent to the permeability in rat jejunum and ileum determined with the Ussing system. Therefore, this newly developed cocktail assay and its application to the Ussing system can be a useful tool for robust and rapid screening for site-specific permeability in rat intestine, thus accelerating the prediction of absorption of new chemical entities.

A Study on Fire Performance of HPC Column with Fiber Cocktail in KS Fire Curve under Loading Condition (표준화재 재하조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 화재거동에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.377-380
    • /
    • 2008
  • The material and mechanical properties in the high temperature area of 40 to 100 MPa high strength concrete structural member was identified based on mixing of fiber cocktail and the structural element fire behavior simulation through the finite element analysis method (ABAQUS) was interpreted. The results are as follows. First, it was interpreted that the test specimen with concrete fiber cocktail mixed was more controllable in the maximum shrinkage than the one with concrete fiber cocktail not mixed the controllable range was about 25% to 55%. This means that shrinkage is controllable through mixing of fiber cocktail for the high strength concrete columns. Second, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance based design of fire resistant construction.

  • PDF

A Rapid Method for the Measurement of $^{222}Rn$ in Groundwater and Hot Spring Water using Ultra Low-Level Liquid Scintillation Counter and Pulse Shape Analysis (극저준위 액체섬광계수기와 파형분석법을 이용한 지하수 및 온천수중 $^{222}Rn$의 신속측정법)

  • Kim, Chang-Kyu;Kim, Cheol-Su
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.103-115
    • /
    • 1995
  • For the determination of $^{222}Rn$ in water by a very simple and time saving liquid scintillation counting method that does not require any chemical separation, an optimum analytical condition has been investigated. The optimum pulse shape analysis(PSA) level for the measurement of $^{222}Rn$ using LKB 1220 Quantulus liquid scintillation counter was 110 for Optiphase HiSafe3 cocktail and 90 for toluene-based cocktail. The counting efficiencies of $^{222}Rn$ in the window covering u spectra using Optiphase HiSafe3 cocktail were 282.2% for glass vial and 271.6% for Teflon vial, whereas the counting efficiencies in toluene-based cocktail were 262.3% and 247.5% for glass and Teflon vials, respectively. The minimum detectable activity(MDA) in the u window for a 60-min measurement with a Teflon vial using Optiphase HiSafe3 cocktail was $0.30Bq/{\iota}$. The analytical method studied from this work was also applied to the determination of $^{222}Rn$ in some groundwater and hot spring water samples.

  • PDF

독립성분분석(ICA)기법을 이용한 플로팅 구조물 진동특성분석

  • Hwang, Jae-Seung;Jeong, Gi-Beom
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.187-188
    • /
    • 2011
  • Independent component analysis (ICA) is a method separating the mixture of signals into statistically and mutually independent ones. It has been applied to not only the Cocktail-party problem but also EEG analysis using the EEG waveform, digital signal processing, image processing and cognitive technique field actively. This study aims to propose a procedure to estimate the modal responses and mode shapes of a floating structure by using the ICA method from measured responses of the floating structure.

  • PDF

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

A Study on the Fire Resistance Performance Concerning Types of Fire Protection Method and Load Ratio of High Strength Concrete Column Using The Wire Rope (와이어로프를 적용한 고강도 철근콘크리트 기둥의 내화공법 및 하중비에 따른 내화성능에 관한 연구)

  • Cho, Bum-Yean;Yeo, In-Hwan;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.64-71
    • /
    • 2012
  • The fire resistance test has been conducted under the standard fire & loading conditions to evaluate fire resistance performance, according to applying to methods of the lateral confinement reinforcement by prestressed Wire Rope and fire resistance reinforcement by Fiber-Cocktail and load ratio for high strength concrete column. The test result, for 60 MPa high-strength concrete column, It was indicated that applying to the wire rope has improved axial ductility in the fire condition, and fire resistance performance has been enhanced by more than 23 %. In addition to this, in case of applying the wire rope to 60 MPa high-strength concrete column, load can be judged that about 70 % of designed load is appropriate. If the Wire Rope and Fiber-Cocktail is applied to 100 MPa high-strength concrete column, It was shown that the fire resistance performance was enhanced by 4 times as much as applying only hoops.

A Study on Thermal Analysis with Strength Characteristics of HPC Column with Fiber Cocktail in KS Fire Curve (표준화재조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 전열특성에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.397-400
    • /
    • 2008
  • To carry out this study efficiently, the material, physical and mechanical properties of the existing high temperature area was identified and the thermal transportation of structural elements was carried out through the finite element analysis method(ABAQUS) for 40 to 100 MPa high strength concrete based on Fiber Cocktail mixing. The results are as follows. First, it was analyzed that 40, 50 and 60 MPa high strength concretes have a thermal transportation properties similar to the analysis model of 30 MPa normal concrete. Second, it was analyzed that the analysis model of 80 and 100 MPa high strength concrete have slightly lower thermal transportation properties compared to normal model. Third, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance-based design of fire-resistant construction.

  • PDF

Experimental Study for Improving Method of Load Bearing and Spalling Prevention of 100 MPa High Strength Concrete Column (100 MPa급 고강도 콘크리트 기둥의 폭렬방지 및 하중지지력 향상방안에 관한 실험적 연구)

  • Cho, Bum-Yean;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu;Kim, Kyeong-Ok
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.78-84
    • /
    • 2012
  • In this study, we have conducted a fire resistance experiment under loading condition on standard fire to evaluate the fire resistance performance according to applying reinforcement of methods for reinforcing the lateral confinement of reinforced bars (Wire Rope) and fire resistance reinforcement (Fiber-Cocktail) for 100 MPa high strength concrete column. In the result of the experiment, in case of the test objects applied by hoop, it has been shown as not possible to be applied as the fire resistance structure after satisfying the fire resistance performance for 43 minutes. In case of applying the wire rope as lateral confinement of reinforced bar, instead of hoop in identical volume ratio, it has been shown as possible to apply it to the buildings with under 4 floors after satisfying the fire resistance performance fro 69 minutes with any separate fire resistance process. Also, in case of applying with mixing wire rope method, instead of hoop, and Fiber-Cocktail mix method to prevent spall, it has been shown as possible to apply to the buildings with over 12 floors after satisfying the fire resistance performance for 180 minutes.

Effect of Precooling on Removal of Field Heat and Respiration Rate of Vegetable Corn(Zes Mays L.) (예냉처리가 풋옥수수의 냉각속도 및 호흡량 변화에 미치는 영향)

  • 손영구;김성열
    • Food Science and Preservation
    • /
    • v.3 no.1
    • /
    • pp.55-60
    • /
    • 1996
  • To obtain the basic data on precooling effects for establishment the suitable postharvest handling technique or method of keeping high quality of vegetalble corn, the sweet, supersweet and waxy corn, (Danok #2, Cocktail #86 and Chalok #1), being mainly consumed as vegetables in Korea, were precooled with ice or vacuum cooling method immediately after harvest. The vacuum cooling was the most effective for the field heat removal of vegetable corn. It took only 30 min. at 4 to 5 torr of cold chamber pressure of vacuum precooler to lower the corn temperature from 30 to 2$^{\circ}C$. The ice cooling was also thought to be a useful precooling method with relatively short cooling time of 6 hrs. The vegetable corn treated with vacuum or ice cooling showed low and stable respiration rates of 25.5 to 43.5 CO2 mg/kg/hr. when stored at 0∼2$^{\circ}C$ while the samples stored at room temperature (20∼25$^{\circ}C$) without precooling were as high as 64.1 to 245 CO, mg/kg/hr.

  • PDF