• Title/Summary/Keyword: Cockcroft-Walton

Search Result 14, Processing Time 0.025 seconds

Symmetrical Cockcroft-Walton circuit for Transformerless High Step-Up DC-DC Converter (변압기 없는 고승압 직류 컨버터용 대칭형 Cockcroft-Walton 회로)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.70-75
    • /
    • 2015
  • High Step-up DC-DC Converters have been demanded for renewable energy applications. Transformer or coupled inductor is generally used to boost output voltage of converters. This methods can relatively obtain high voltage than others, whereas have heavy weight and high cost. To complement these disadvantages, we studied transformerless high step-up DC-DC converter. In various transformerless topologies, Boost converters combined with Cockcroft-Walton have studied. In this paper, we proposed a symmetrical Cockcroft-Walton circuit for transformerless high step-up DC-DC converter. Finally, we simulated proposed converter to compare with existing converter. As a result, proposed converter has higher duty ratio or lower cost than existing transformerless converters which are discussed in this paper.

Cockcroft-Walton Voltage Multiplier Simulation According to Diode Parasitic Capacitance for Xray Generator Designing (Xray 발생장치 설계를 위한 다이오드 기생 커패시턴스에 따른 Cockcroft-Walton Voltage Multiplier 시뮬레이션)

  • Im, Gyu-Wan;Mok, Hyung-Soo;Zhu, He-Lin
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.397-398
    • /
    • 2020
  • 최근 COVID-19(Coronavirus disease, 2019)의 발병으로 정확한 진단을 하기위한 X-ray 검사에 대한 수요가 증가하고 있다. 품질이 높은 수준의 Xray 영상을 얻기 위해서는 X-ray 튜브에 촬영 목적에 맞는 일정한 고전압을 제어를 통해 인가해야 한다. 그러기 위해서는 전력변환장치의 출력전압 특성을 고려하여 설계해야 한다. 따라서 Xray 발생장치에 주로 사용되는 Cockcroft-Walton Voltage Multiplier를 사용하여 다이오드의 기생커패시턴스 성분이 변압기의 누설 인덕턴스 성분, 회로의 기생 인덕턴스 성분과 공진현상을 일으켜 발생하는 출력전압의 특성 변화에 대한 시뮬레이션을 개발하고 분석 하였다.

  • PDF

A New CW CO2 Laser with Precise Output and Minimal Fluctuation by Adopting a High-frequency LCC Resonant Converter

  • Lee, Dong-Gil;Park, Seong-Wook;Yang, Yong-Su;Kim, Hee-Je;Xu, Guo-Cheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.842-848
    • /
    • 2011
  • The current study proposes the design of a hybrid series-parallel resonant converter (SPRC) and a three-stage Cockcroft-Walton voltage multiplier for precisely adjusting the power generated by a continuous wave (CW) $CO_2$ laser. The design of a hybrid SPRC, called LCC resonant converter, is described, and the fundamental approximation of a high-voltage and high-frequency (HVHF) transformer with a resonant tank is discussed. The results of the current study show that the voltage drop and ripple of a three-stage Cockcroft-Walton voltage multiplier depend on frequency. The power generated by a CW $CO_2$ laser can be precisely adjusted by a variable-frequency controller using a DSP (TMS320F2812) microprocessor. The proposed LCC converter could be used to obtain a maximum laser output power of 23 W. Moreover, it could precisely adjust the laser output power within 4.3 to 23 W at an operating frequency range of 187.5 to 370 kHz. The maximum efficiency of the $CO_2$ laser system is approximately 16.5%, and the minimum ripple of output voltage is about 1.62%.

The development of a high efficient transcranial magnetic stimulation adopted real time-charging-discharging circuit

  • Kim, Whi-Young;Park, Sung-Joon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.9-15
    • /
    • 2010
  • In this study, we have been proposed the new type of a transcranial magnetic stimulation adopted a variable voltage capacitor with Cockcroft-Walton circuit and constant-frequency current resonant half-bridge inverter. This a transcranial magnetic stimulation has some merits compared with the conventional one. First, it doesn't require the high voltage transformer. And second, it has less switching losses, compact size and capability in adjusting the transcranial magnetic stimulation output energy precisely. In this paper, we have performed the output characteristics of a transcranial magnetic stimulation system which is well known as magnetic stimulation. The tested results are described as a function of pulse repetition rate and switching numbers of the half-bridge inverter.

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.

Transcranial Magnetic Stimulation using Cockroft-Walton Circuit and Half Bridge Resonant Inverter (코크로프트-월톤회로와 반파공진인버터를 적용한 경두개 자기자극장치)

  • Kim, Whi-Young;HwangBo, Gak
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.257-264
    • /
    • 2010
  • Though existent a transcranial magnetic stimulation makes various treatment and diagnostic sine waveform of fixed stimulation pulse, there is limitation. In this research, because strength, pulse width, pulse pattern required in treatment and diagnostic introduce other Cockroft-Walton circuit and half bridge inverter frequency and voltage variable become new device propose wish to. Have more advantages than existing device. First, do not have high voltage transformer. Second, switching loss can be less, and control output energy precisely. Three, stimulation strengths, pulse width, pulse pattern are various. As a result, sought special quality and an experiment that is improved applying inverter and cockroft - Walton circuit is half bridge inverter that do not use transformer.

A CW $CO_2$ Laser Using a High Voltage Dc-dc Converter with Half-bridge Resonant Inverter and Cockroft-Walton Multiplier

  • Chung, Hyun-Ju;Joung, Jong-Han;Kim, Geun-Young;Min, Byoung-Dae;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.123-129
    • /
    • 2003
  • We propose a high voltage dc-dc converter for a CW (continuous wave) $CO_2$ laser system using a current resonant half-bridge inverter and a Cockcroft-Walton circuit. This high voltage power supply includes a 2-stage voltage multiplier driven by a regulated half-bridge series resonant inverter. The inverter drives a step-up transformer and the secondary transformer is applied to the voltage multiplier. It is highly efficient because of the reduced amount of switching losses by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up secondary transformer combined with the Cockroft-Walton circuit. We obtained a maximum laser output power of 44 W and a maximum system efficiency of over 16%.

A study on the efficiency improvement and miniaturization of a CW $CO_2$ laser using half-bridge resonant Inverter and Cockroft-Walton multiplier (공진형 인버터 및 Cockroft-Walton 회로를 이용한 연속형 $CO_2$ 레이저 효율 향상 및 소형화에 관한 연구)

  • Chung, Hyun-Ju;Min, Byong-Dae;Kim, Hee-Je;Kim, Tae-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1821-1823
    • /
    • 2003
  • We propose a high voltage dc-dc converter for CW(continuous wave) $CO_2$ laser system using a current resonant half-bridge inverter and a Cockcroft-Walton circuit. This high voltage power supply includes a 2-stage voltage multiplier driven by a regulated half-bridge series resonant inverter. The inverter drives a step-up transformer and the transformer secondary is applied to the voltage multiplier. Thus, it has high efficiency because of the less switching losses by virtue of the current resonant half-bridge inverter, and also compact size, small parasitic capacitance in the transformer stage owing to the low number of a winding turn of the step up transformer secondary by combining with Cockroft-Walton circuit. We could be obtained the maximum laser output power of 44 W and the maximum system efficiency of over 16 %.

  • PDF

A Study on the Stability of the Accelerating Voltages in Scanning Electron Microscopy (주사전자현미경에서 가속전압의 안정성 연구)

  • Bae, Moon-Seob;Oh, Sang-Ho;Cho, Yang-Koo;Lee, Hwack-Joo
    • Applied Microscopy
    • /
    • v.34 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • The high acceleration voltage system used in scanning electron microscope were designed and manufactured to test its stability. The Cockcroft-Walton circuits are used both in the cathode voltage up to -30 kV and in the Wehnelt cylinder of -2 kV. The operating voltage of 6 V was applied to the heating of the filament. The wave forms which are formed in the second leg of the high voltage transformer were observed in the oscilloscope with 2 V of DC input. When the high voltages were in the range between 5 kV and 12 kV, the highest value of the stabilities of the generated voltages was obtained as 0.002%.

Minimization of a CW CO2 Laser Output Ripple by using High Frequency Resonance Phenomena (고주파 공진현상을 이용한 CW CO2 레이저의 출력리플 최소화)

  • Sikander, Sakura;Kwon, Min-Jae;Kim, Hee-Je;Lee, Dong-Gil;Xu, Guo-Cheng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.798-802
    • /
    • 2013
  • In a conventional DC power supply used for CO2 laser, the circuit elements such as a rectifier bridge, a current-limiting resistor, a high voltage switch, energy storage capacitors ans a high-voltage isolation transformer using high turn ratio are necessary. Consequently, those supplies are expensive and require a large space. Thus, laser resonator and power supply should be optimally designed. In this paper, we propose a new power supply using high frequency resonance phenomena for CW(Continuous wave) CO2 laser (maximum output of 23W with discharge length of 450mm). It consists of a transformer including leakage inductance, magnetizing inductance and half-bridge converter, a three-stage Cockcroft-Walton and PFC(Power factor correction) circuit. The output ripple voltage can be controlled the minimum of 0.24% under the high frequency switching of 231kHz. Furthermore, the output efficiency was improved to 16.4% and the laser output stability of about 5.6% was obtained in this laser system.