• Title/Summary/Keyword: Cobalt electrode

Search Result 136, Processing Time 0.028 seconds

Origin of Nonlinear Device Performance with Illuminated Sun Intensity in Mesoscopic Sb2S3-sensitized Photoelectrochemical Solar Cells using Cobalt Electrolyte

  • Im, Sang-Hyuk;Lee, Yong-Hui;Kim, Hi-Jung;Lim, Choong-Sun;Kang, Yong-Ku;Seok, Sang-Il
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.174-179
    • /
    • 2011
  • The mesoscopic $Sb_2S_3$-sensitized photoelectrochemical solar cells using cobalt redox electrolyte exhibit nonlinear behavior of power conversion efficiency with illuminated sun intensity. From the measurement of bulk diffusion and electrochemical impedance spectroscopy studies, we suggest that the nonlinearity of device performance with illuminated sun intensity is attributed not to the slow bulk diffusion problem of cobalt electrolyte but to the limited mass transport in narrowed pore volume in mesoscopic $TiO_2$ electrode.

Selective Oxidation of 2,6-di-tert-butylphenol and Electrochemical Properties by Oxygen Adducted Tetradentate Schiff Base Cobalt (Ⅲ) Activated Catalysts in Aprotic Solvents (비수용매에서 산소 첨가된 네자리 Schiff Base Cobalt(Ⅲ) 활성 촉매들에 의한 2,6-di-tert-butylphenol의 선택 산화와 전기화학적 성질)

  • Jo, Gi Hyeong;Choe, Yong Guk;Ham, Hui Seok;Kim, Sang Bok;Seo, Seong Seop
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.569-581
    • /
    • 1990
  • It is generated in DMF by activated catalysts of superoxo cobalt(III) complex, such as [Co(III)(Schiff base)(L)]O$_2$ (Schiff base; SED, SOPD and o-BSDT, L; DMF and Py) which mole ratio of oxygen to metal is 1:1 that oxidation major product of 2,6-di-tert-butylphenol by homogeneous oxidatve catalysts of oxygen adducted tetradentate Schiff base cobalt(III) is 2,6-ditert-butylbenzoquinone (BQ). And oxidation product of 3,3',5,5'-tetra-tert-butyldiphenoquinone (DPQ) is generated by activated catalysts such as $\mu$-peroxo cobalt(III) complex; $[Co(III)(SND)(L)]_2$$O_2$ (L; DMF and Py) which mole ratio of oxygen to metal is 1:2. It is difficult to identify these homogeneous activated catalysts such as superoxo and $\mu$-peroxo cobalt(III) complexes in DMF and DMSO solvents. But we can identify by P.V.T method of the oxygen absorption in pyridine solvent and by the reduction process occurred to four steps including prewave of O$_2$- in 1:1 oxygen adducted superoxo cobalt(III) complexes and three steps not including prewave of O$_2$- in 1:2 oxygen adducted $\mu$-peroxo cobalt(III) complexes by the cyclic voltammetry with glassy carbon electrode in 0.1 M TEAP as supporting electrolyte solutidn.

  • PDF

Electrochemical Properties of Oxygen Adducts Pentadentate Schiff Base Cobalt (Ⅱ) Complexes in Aprotic Solvents (비수용매에서 다섯 자리 Schiff Base Cobalt (Ⅱ) 착물들의 산소 첨가 생성물에 대한 전기화학적 성질)

  • Choe, Ju Hyeong;Jeong, Jin Sun;Choe, Yong Guk;Seo, Seong Seop
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.51-62
    • /
    • 1990
  • Pentadentate Schiff base cobalt(II) complexes; Co(II)(Sal-DET) and Co(II)(Sal-DPT) were synthesized and these complexes were allowed to react with dry to form oxygen adducts of cobalt(II) complexes such as [Co(III)(Sal-DET)]$_2O_2$ and [Co(III)(DPT)]$_2O_2$ in aprotic solvents. These complexes have been identified by IR spectra, TGA, DSC, magnetic susceptibility measurements, and elemental analysis. It has been found that the oxygen adadduct complexes of $\mu$-peroxo type have hexaccordinated octahedral configuration with pentadentate schiff base cobalt(II) and oxygen, but the mole ratio of oxygen to cobalt(III) complexes of first step for oxygen adduct formation reaction of cobalt(II) complexes in aprotic solvents are 1:1. The redox reaction processes of Co(II)(Sal-DET), Co(II)(Sal-DPT), and oxygen adduct of cobalt(II) complexes were investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMSO and 0.1M TEAP-pyridine. As a result the reduction reaction processes of Co(III)/Co(II) and Co(II)/Co(I) for cobalt(II) complexes and oxygen adducts of cobalt(II) complexes are two irreversible steps of one eletron process, and reaction processes of oxygen for oxygen adducts complexes were quasireversible and redox range of potential was $E_{pc}$ = -0.97V∼-0.86V and $E_{pa}$ = -0.87V ∼ 0.64V.

  • PDF

Studies on Electrochemical properties of Lithium/Oxyhalide Cell: Electrocatalytic Effects on the Reduction of Thionyl Chloride

  • Kim Woo Seong;Choi Yong-Kook;Chjo Ki-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.456-460
    • /
    • 1994
  • Catalytic effects of various cobalt phenylporphyrin compounds on the reduction of thionyl chloride at glassy carbon electrode have been evaluated by determining kinetic parameters with cyclic voltammetric techniques. The concentration of catalysts and the electrode immersion time have been found to affect the catalyst performance strongly, leading to a conclusion that the compounds are first adsorbed at the electrode surface and act as catalysts. Significant improvements in cell performance have been noted in terms of both exchange rate constants of up to 3 times and current densities of up to 150% at glassy carbon electrode.

A Facile synthesis of CoS by Successive Ionic Layer Adsorption and Reaction (SILAR) Process for Supercapacitors (스테인리스강 기판에 연속 이온 층 흡착 및 반응 (SILAR) 공정을 통한 CoS 코팅 및 슈퍼캐패시터 전극 특성)

  • Kim, Jaeseung;Lee, Jaewon;Kumbhar, Vijay S.;Choi, Jinsub;Lee, Kiyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.130-137
    • /
    • 2019
  • In this study, the cobalt sulfide (CoS) nanosheet on stainless steel as a supercapacitor electrode is synthesized by using a facile successive ionic layer adsorption reaction (SILAR) method. The number of cycles for dipping and rinsing can control the nanosheet thickness of CoS on stainless steel. Field emission-scanning electron microscopy (FE-SEM) showed a layer structure of CoS particles coupled as agglomeration. And x-ray diffraction (XRD) showed the crystallinity of the CoS nanosheet. To investigate the characteristics of the CoS nanosheet electrode as the supercapacitor, analysis of electrochemical measurement was conducted. Finally, the CoS nanosheet of 70cycles on stainless steel shows the specific capacitance ($44.25mF/cm^2$ at $0.25mA/cm^2$) with electrochemical stability of 78.5% over during 2000cycles.

A Study on Recovery of Rare Earth and Acid Leaching for Wet Recycling of Waste NiMH Batteries (니켈수소 폐이차전지의 습식 재활용을 위한 산침출 및 희토류 회수에 대한 연구)

  • Ahn, Nak-Kyoon;Kim, Dae-Weon;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.22-30
    • /
    • 2018
  • In order to industrially recycle nickel, cobalt and rare earth elements included in waste NiMH batteries, electrode powder scraps were recovered by dismantle, crushing and classification from automobile waste battery module. As a result of leaching recovered electrode powder scrap with sulfuric acid solution, 99% of nickel, cobalt and rare earth elements were leached under reaction conditions of 1.0 M sulfuric acid solution, pulp density 25 g/L and reaction temperature $90^{\circ}C$ for 4 hours. In addition, the rare earth elements were able to separate from nickel / cobalt solution as cerium, lanthanum and neodymium precipitated under pH 2.0 using 10 M NaOH.

A Study on the Electrochemical Kinetics of Electrowinning Process of Valuable Metals Recovered from Lithium-ion Batteries (폐리튬이온전지로부터 유가금속 회수를 위한 전해채취 공정 전기화학 반응속도론적 연구)

  • Park, Sung Cheol;Kim, Yong Hwan;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.59-66
    • /
    • 2022
  • To investigate the rate-determining step of nickel, cobalt and copper electrowinning, experiments were conducted by varying the electrolyte temperature and agitation speed using a rotating disc electrode. Analyzing the rate-determining step by calculating the activation energy in the electrowinning process, it was found that nickel electrowinning is controlled by a mixed mechanism (partly by chemical reaction and partly by mass transport), cobalt is controlled by chemical reaction, and copper is controlled by mass transfer. Electrowinning of nickel, cobalt and copper was performed by varying the electrolyte temperature and agitation speed, and the comparison of the current efficiencies was used the determine the rate-determining step.

Electrochemical Stability of Co-Mo and Ni-Mo Intermetallic Compound Electrodes for Hydrogen Electrode of Alkaline Fuel Cell (알칼리형 연료전지의 수소극용 Co-Mo 및 Ni-Mo 금속간화합물 전극의 전기화학적 안정성)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.150-155
    • /
    • 1999
  • The Electrochemical stabilities of the Brewer-Engel type intermetallic compounds of Co-Mo $(35 wt\%)$ and Ni-Mo$(35 wt\%)$ manufactured by the arc-melting method for the hydrogen electrode of $H_2-O_2$ alkaline fuel cell were investigated. Effects of temperature and concentration on the electrochemical behavior of the electrodes in the $80^{\circ}C$ 6 N KOH solution deaerated with $N_2$ gas were studied by electrochemical methods. The effect of overpotential on the electrochemical stabilities of Co-Mo and Ni-Mo intermetallic compounds was also discussed under the normal operation condition of AFC. It was shown that Co-Mo electrode had lower electrochemical stability as compared to Ni-Mo. In the case of Co-Mo electrode, a simultaneous dissolution of cobalt and molybdenum has occurred at low anodic overpotential form equilibrium hydrogen electrode potential, but the dissolution of cobalt was serious, and Co(OH)l layer on the electrode surface formed at the high anodic overpotential. In contrast the Ni-Mo electrode had high electrochemical stability because formation of the dense and thin protective $Ni(OH)_2$ layer prevented the dissolution of molybdenum.

Studies on the Electrochemical Properties of Oxygen Adducts Tetradentate Schiff Base Cobalt (Ⅱ) Complexes in Aprotic Solvents (Ⅱ) (비수용매에서 네자리 Schiff Base Cobalt (II) 착물들의 산소첨가 생성물에 대한 전기화학적 성질에 관한 연구 (제 2 보))

  • Ki-Hyung Chjo;Jin-Soon Chung;Heui-Suk Ham;Seoing-Seob Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.192-202
    • /
    • 1989
  • Tetradentate schiff bases cabalt (II) complexes; Co(SED) and Co(ο-BSDT) were synthesized and these complexes allowed to reaction with dry oxygen to form oxygen adduct cobalt(III) complexes such as $[Co(o-BSDT)(DMSO)]_2O_2,\;[Co(SED)(Py)]_2O_2\;and\;[Co(o-BSDT)(Py)]_2O_2$ in DMSO and pyridine solutions. It has been found that the oxygen adduct cobalt(III) complexes have hexacoordinated octahedral configuration with tetradentate schiff base cobalt(II), DMSO or pyridine and oxygen, and the mole ratio of oxygen to cobalt(II) complexes are 1:2. The redox processes, were investigated for Co(SEDT) and Co(ο-BSD) complexes in 0.1M TEAP-DMSO and 0.1M TEAP-pyridine by cyclic voltammetry with glassy carbon electrode. As a result the redox processes of Co(II)/Co(III) and Co(II)/Co(I) found to be reversible or quasi-reversible for non uptake oxygen complexes but oxygen adduct complexes found to be irreversible processes and reaction processes of oxygen for oxygen adduct complexes are quasi-reversible process, the potential range was $E_{pc}=-0.85{\sim}-1.19V\;and\;E_{pa}=-0.74{\sim}-0.89V$.

  • PDF