• Title/Summary/Keyword: Cobalt coating

Search Result 49, Processing Time 0.025 seconds

Preparation and Chrominance of Metal Oxide Coated Titania/Mica Pearlescent Pigment (금속산화물이 코팅된 마이카 티타니아 진주광택 안료의 제조 및 색차변화)

  • Lee, Kwan-Sik;Kang, Kuk-Hyoun;Lee, Jin-Hee;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.233-243
    • /
    • 2013
  • The inorganic pearlescent pigment have high physical and chemical stability, thus it is used in a variety field, which has better light stability, solvent resistance and thermostability. In this paper, we were synthesized the pearlescent pigment for cosmetics which was coated cobalt chloride for base of blue color metal oxide on mica titania substrate using hydrothermal synthesis method. To complement the color of the pigment by cobalt, pearl pigment were coated by different metal salt and cobalt ratio, to implement a variety of color value, depending on the kind of metal salts were synthesized. Synthesized pearlescent pigments appear various color as kind of added metal salt precursor and molar ration of cobalt and other metals. We controlled coating and color by composition of metal salt and type of metal salts, and that confirm the pigment characteristics of color changes through the analysis of color difference meter. Synthesized pigment was characterized by SPM, SEM, XRD, and EDS.

Synthesis and Characterization of CoFe2O4/SiO2 using Cobalt Precursors from Recycling Waste Cemented Carbide (폐 초경합금에서 추출된 Co를 이용한 CoFe2O4/SiO2 합성 및 특성평가)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Yoo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.454-457
    • /
    • 2011
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$, particles using recycled $Co_3O_4$ and their surface coating with silica using micro emulsion method. Firstly, the $Co_3O_4$ powders were separated from waste cemented carbide with acid-base chemical treatment. The cobalt ferrite nanoparticles with the size 10 nm are prepared by thermal decomposition method using recycled $Co_3O_4$. $SiO_2$ was coated onto the $CoFe_2O_4$ particles by the micro-emulsion method. The $SiO_2$-coated $CoFe_2O_4$ particles were studied their physical properties and characterized by X-ray diffraction (XRD), high resolution-transmission electron microscopy (TEM) analysis and CIE Lab value.

Carbonylation of Bromo(Bromomethyl)Benzenes to Alkyl Carboalkoxyphenylacetates Catalyzed by Cobalt Carbonyl

  • Shim, Sang-Chul;Doh, Chil-Hoon;Lee, Dong-Yub;Youn, Young-Zoo;Lee, Seung-Yub;Chae, Shin-Ae;Oh, Dae-Hee;Oh, Hun-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.45-48
    • /
    • 1992
  • A synthetic method for bis-carbonylation of bromo(bromomethyl)benzenes was described. Alkyl carboalkoxyphenylacetates were easily prepared by the carbonylation of benzylic and arylic bromide moieties in bromo(bromomethyl)benzenes with alcohols in the presence of $K_2CO_3,\;CH_3I$, and a catalytic amount of cobalt carbonyl under the atmospheric pressure of carbon monoxide at room temperature in good to excellent yields. The base played a decisive role in the selectivity of product and $K_2CO_3$ was the best one among bases used.

HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower (터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅)

  • Joo, Y.K.;Yoon, J.H.;Cho, T.Y.;Chun, H.G.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.

Improving Smoothness of Hydrophilic Natural Polymer Coating Layer by Optimizing Composition of Coating Solution and Modifying Chemical Properties of Cobalt-Chrome Stent Surface (코팅 용액의 조성 최적화 및 코발트-크롬 금속스텐트의 화학적 표면개질을 통한 친수성 천연 고분자 코팅층의 표면 거칠기 개선)

  • Kim, Dae Hwan;Kum, Chang Hun
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • Recently, the number of cardiovascular disease-related deaths worldwide has increased. Therefore, the importance of percutaneous cardiovascular intervention and drug-eluting stents (DES) has been highlighted. Despite the great clinical success of DES, the re-endothelialization at the site of stent implantation is retarded owing to the anti-proliferative effect from the coated drug, resulting in late thrombosis or very late restenosis. In order to solve this problem, studies have been actively carried out to excavate new drugs that promote rapid re-endothelialization. In this study, we introduced hydrophilic drug, tauroursodeoxycholate (TUDCA), that improves the proliferation of endothelial progenitor cells and promotes apoptosis of vascular smooth muscle cells. In addition, we utilized shellac, which is a natural resin from lac bug to coat TUDCA on the surface of the metal. When using conventional coating method including biodegradable polymers and organic solvents, phase separation between polymer and drug occurred in the coating layer that caused incomplete incorporation of drug into the polymer layer. However, when using shellac as a coating polymer, no phase separation was observed and drug was fully covered with the polymer matrix. In addition, by adjusting the composition of coating solution and modifying the hydrophilicity of the metal surface using oxygen plasma, the surface roughness decreased due to the increased affinity between coating solution and metal surface. This result provides a method of depositing a hydrophilic drug layer on the stent.

The Chemical Vapor Deposition of TiN on Cemented Tungsten Carbide Cutting Tools (초연합금절단공구상에 TiN의 화학증착피막에 관한 연구)

  • 이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.3
    • /
    • pp.138-145
    • /
    • 1982
  • The effects of the simultaneous variations of the ratio of feed gases(H2/N2 Flow ratio), feed gas flow rate (H2/N2, total-flow rate) and partial pressures of TiCl4 (PTiCl41) as well as deposition time and cobalt content of the substrate on the deposition rate of the TiN Coated Cemented Tungsten Carbide Tools were investigated. Deposition was carried out in the temperature range of 930$^{\circ}C$-1080$^{\circ}C$ and an activation energy of 46.5 Kcal/mole can be calculated. Transverse rupture strength was noticeably reduced by the TiN coating on the virgin surfa-ce of Cemented Tungsten Carbide, the extent of which was decreased according to the coa-ting thickness. Microhardness value observed on the work was in the range of 1700∼2000kg/mm, which were in well agreement with the value of bult TiN. The wear resistance of TiN layers was performed by turning test and it was observed that crater and flank resistance remarkably enhanced by TiN coating.

  • PDF

Wear Mechanism of Plasma-Sprayed Coating in Mo- and Co-Based Alloy

  • Lee, Soo W.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.108-113
    • /
    • 1995
  • Wear and friction behavior of plasma-sprayed coatings in Mo- and Co-based alloy were studied for the application of piston-ring automobile engine. The plasma-sprayed coatings were varied with gun current density, gas flow, and distance. The surface roughness, microhardness, and wear volume were measured depending on the spray distances. The high temperature hardness value were also measured as a function of temperature. Ball-on-disc geometry configuration tribometer was utilized in air. The wear tests were performed in the temperature ranges from room temperature to 825$^{\circ}$C to investigate the tribological trend of the piston-ring materials in the lack of lubricant. The cross sections of wear track were investigated, using microscopy.

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure (두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Kim, Kyung-Ja
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

Application of nanocomposite material to avoid injury by physical sports equipment

  • Weifeng Qin;Zhubo Xu
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.195-200
    • /
    • 2023
  • Safety in sports is important because if an athlete has an accident, he may not be able to lead an everyday life for the rest of his life. The safety of sports facilities is very effective in creating people's sports activities, with the benefits of staying away from physical injury, enjoying sports, and mental peace. Everyone has the right to participate in sports and recreation and to ensure that they want a safe environment. This study prepares a very good Nickel-Cobalt -Silicon carbide (Ni/Co-SiC) nanocomposite with convenient geometry on the leg press machine rod, employing the pulse electrodeposition technique to reduce the rod's wear and increase the durability of sports equipment and control sports damages. The results showed that the Ni/Co-SiC nanocomposite formed at 2 A/dm2 shows extraordinary microhardness. The wear speed for the Ni/Co-SiC nanocomposite created at 4 A/dm2 was 15 mg/min, showing superior wear resistance. Therefore, the Ni/Co-SiC nanocomposite can reduce sports equipment's wear and decrease sports injuries. Ni-Co/SiC nanocomposite layers with various scopes of silicon carbide nanoparticles via electrodeposition in a Ni-Co plating bath, including SiC nanoparticles to be co-deposited. The form and dimensions of Silicon carbide nanoparticles are watched and selected using Scanning Electron Microscopy (SEM).

Research Trends in Coating Strategies for Residual Lithium Control in High-Nickel Li(NixCoyMn1-x-y)O2 Cathodes (고니켈 삼원계 층상구조 양극 물질의 잔류 리튬 제어를 위한 코팅 기술 연구 동향)

  • Ui Yeoun Song;Eun Ji Lee;Ji Eun Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.182-191
    • /
    • 2024
  • Li(NixCoyMn1-x-y)O2 (NCM) is the intensively developed cathode material for expanding the electric vehicle market and developing lithium-ion batteries that meet higher capacity, longer life, and lower cost. High-nickel NCM increases the nickel content to 80% or more, securing price competitiveness by improving performance with high energy density and reducing the cost of cobalt. However, the high-nickel NCM materials have a residual lithium problem, leading to issues in battery performance degradation and stability. While various methods exist for removing residual lithium, such as washing, doping, and coating, this paper focuses on recent research trends in coatings aimed at enhancing NCM performance and stability by removing residual lithium.