• Title/Summary/Keyword: Coating machine

Search Result 192, Processing Time 0.024 seconds

A Study on Electrostatic Powder Coating for 3D Scanning of Diffused Surfaces (난반사 표면의 3D 스캐닝을 위한 정전분말코팅 연구)

  • Maeng, Heeyoung;Lee, Myoung Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • Using an optical 3D scanning device to collect data from a diffused reflection surface is very difficult. To solve this problem, there are many applications including a spray-type developer and silicon molds. However, using a developer can cause chemical reactions between objects and particles of the developer and uneven surfaces on the object. To overcome these problems, we suggest an electrostatic powder coating method for even coating of particles onto surfaces for collecting 3D shape data. We have developed an automatic, electrostatic powder-coating machine and performed three different experiments to compare this system with a laser interferometer and a T-scan 3D scanner. As a result, we could ascertain the various characteristics of this new method, including good sensitivity for the various surface states of the bare surface, developer, and electrostatic powder coating. Finally, we verified the outstanding scanning performance and were able to demonstrate that this method achieves quality than traditional methods.

Sliding Wear Characteristics of plasma Sprayed $8\%Y_{2}O_3-ZrO_2$ Coating for Post-spray Heat Treatment

  • Chae Young-Hun;Kim Seock-Sam
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • Plasma ceramic spray that is applied on a machine part under severe work conditions has been investigated for tribological behavior. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce wear resistance and long life in severe conditions. The purpose of this study was to investigate the wear characteristics of $8\%Y_{2}O_3-ZrO_2$ coating, in view of the effect of post-spay heat treatment. The plasma-sprayed $8\%Y_{2}O_3-ZrO_2$ coating was studied to know the relationship between phase transformations and wear behavior related to post-spray heat treatment. Wear test was carried out with ball on disk type on normal loads of 50N,70N and 90N under room temperature. The phase transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings were observed by SEM. The tribological wear performance was discussed in the focusing of residual stress. Consequently, post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in the coating system has a significant influence on the wear mechanism of coating.

A comprehensive study of spin coating as a thin film deposition technique and spin coating equipment

  • Tyona, M.D.
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.181-193
    • /
    • 2013
  • Description and theory of spin coating technique has been elaborately outlined and a spin coating machine designed and fabricated using affordable components. The system was easily built with interdisciplinary knowledge of mechanics, fluid mechanics and electronics. This equipment employs majorly three basic components and two circuit units in its operation. These include a high speed dc motor, a proximity sensor mounted at a distance of about 15 mm from a reflective metal attached to the spindle of the motor to detect every passage of the reflective metal at its front and generate pulses. The pulses are transmitted to a micro-controller which process them into rotational speed (revolution per minute) and displays it on a lead crystal display (LCD) which is also a component of the micro-controller. The circuit units are a dc power supply unit and a PWM motor speed controlling unit. The various components and circuit units of this equipment are housed in a metal casing made of an 18 gauge black metal sheet designed with a total area of 1, $529.2cm^2$. To illustrate the use of the spin-coating system, ZnO sol-gel films were prepared and characterized using SEM, XRD, UV-vis, FT-IR and RBS and the result agrees well with that obtained from standard equipment and a speed of up to 9000 RPM has been achieved.

Friction of component coatings in lubricated contact

  • Jacobson, Staffan;Hogmark, Sture
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.133-134
    • /
    • 2002
  • The use of low friction wear resistant coatings for machine components is rapidly increasing. These components may operate in any lubrication regime, and less frequently even unlubricated. When run unlubricated it is easy to see the beneficial effect of a low friction coating. However, it has frequently been shown that the coating may also be very beneficial under boundary and mixed lubrication conditions. The present digest briefly presents a few interesting aspects of the use of low friction coatings in lubricated contact illustrated by selected experimental results.

  • PDF

Structural Analysis Comparison of Continuous Casting Mold (연속주조 몰드의 구조해석 비교)

  • 원종진;이종선;홍석주;이현곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.181-187
    • /
    • 2000
  • This study is object to structural analysis comparison of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. For structural analysis using thermal analysis result from ANSYS. In other to structural analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Thermal Analysis Comparison of Continuous Casting Mold (연속주조 몰드의 열해석 비교)

  • 원종진;이종선;윤희중;이현곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.200-205
    • /
    • 2000
  • This study is object to thermal analysis comparison of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution for continuous casting mold. For thermal analysis using analysis result from ANSYS. In other to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

HVOF Spray Coating of Co-alloy(T800) for the Improvement of durability of High Speed Spindle (초고속 회전체의 내구성향상을 위한 Co-alloy(T800)의 초고속 용사코팅)

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Park, Byung-Chul;Chun, Hui-Gon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.32-37
    • /
    • 2006
  • Micron size Co-alloy(T800) powder was coated on Inconel 718 by HVOF thermal spraying for the studies of the improvement of durability of high speed spindle by using Taguchi program for the parameters of spray distance, flow rates of hydrogen and oxygen and powder feed rate. The optimal coating process was determined by the studies of coating properties such as micro-structure, porosity, surface roughness and micro hardness. Friction and wear behaviors of coatings were investigated by sliding wear test at room temperature and $1000^{\circ}F(538^{\circ}C)$. At both room temperature and $538^{\circ}C$ the sliding wear debris and friction coefficients of the coating were drastically reduced compared with the surface of non-coated parent material. This shows that Co-alloy powder coating is highly recommendable for the durability improvement surface coating of high speed air-bearing spindle. At high temperature wear traces and friction coefficients of both coating and non-coating were drastically reduced compared with those of room temperature since the brittle oxides were formed easily on the surface, and the brittle oxide phases were attrited by the reciprocating sliding wear according to the complicated mixed wear mechanisms These oxide particles, partially melts and the melts play role as lubricant and reduce the wear and friction coefficient. This also shows that Co-alloy powder coating is highly recommendable far the durability improvement surface coating on the surface vulnerable to frictional heat such as high speed spindles.

A Study on Wear Mechanism in Diamond-like Carbon Coated Surface by Finite Element Analysis (유한요소해석에 의한 DLC 코팅면의 마멸기구에 대한 연구)

  • Lee, Jun-Hyuk;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.366-371
    • /
    • 2013
  • Various heat treatment and surface coating methods have been applied to machine parts. Nowadays, diamond-like carbon (DLC) coatings are widely used because of their excellent tribological characteristics. Despite the numerous studies on DLC-coated engineering surfaces, the exact wear mechanisms related to the coating thickness and elastic modulus have not been fully examined. In this study, a sliding contact problem between a small spherical hard particle and a DLC-coated steel surface is analyzed using a nonlinear finite element code, MARC. The maximum principal stress distributions and deformed surfaces are compared for different coating thicknesses and Young's modulus values. Plastically deformed surface shapes such as a groove and torus indicate that the most dominant wear mechanism for a DLC-coated surface is abrasive wear. Fatigue wear can also play a role in a case where the coating thickness is relatively large and the elastic modulus is high.

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata;Hiroki Yokoi;Dasom Kim;Asuka Suzuki;Makoto Kobashi
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2024
  • An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

Effects of Stoichiometry on Properties of NiAl Intermetallics coated on Carbon Steel through Combustion Synthesis (연소합성 코팅된 NiAl 금속간화합물의 화학양론이 미끄럼 마모특성에 미치는 영향)

  • Lee, Han-Young;Lee, Jae-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The effect of the stoichiometry on the sliding wear properties of NiAl coatings has been investigated. Three different powder mixtures with the compositions of Ni-50at%Al, Ni-54at%Al and Ni-42at%Al were diepressed respectively, and which were subsequently coated on mild steel through combustion synthesis in an induction heating system. Sliding wear behavior of the coatings was examined against an alloyed tool steel using a pin-on-disc type sliding wear test machine. As results, it could be seen that powder mixture(Ni-54at%Al) with displaying Al-rich deviations from the stoichiometry of NiAl(Ni-50at%Al) was promoted the most the synthetic reactivity. The microstructure of the coating layer with the compositions of Ni-54at%Al exhibits the porous NiAl single phase structure. However, the microstructure of the coating layer of the compositions of Ni-42at%Al exhibits the denser multi-phase structure containing several intermediate phases in addition to NiAl. Densification of the coating layer was enhanced by increasing the reacting temperature. On the other hand, the wear properties of the coating layers showed that the wear mode at speeds of around 1 m/s was severe wear, regardless of the stoichiometry and reacting temperature. However, wear properties of coating layer with the compositions of Ni-42at%Al were superior to those of coating layer with the compositions of Ni-54at%Al. This would be attributed by the fact that coating layer with the compositions of Ni-42at%Al develops little void and much intermediate phases with high strength.