• Title/Summary/Keyword: Coating Liquid

Search Result 323, Processing Time 0.027 seconds

Fabrication of the Solution-Derived BiAlO Thin Film by Using Brush Coating Process for Liquid Crystal Device (브러쉬 코팅 공정을 이용한 용액 기반 BiAlO 박막의 제작과 액정 소자에의 응용)

  • Lee, Ju Hwan;Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.321-326
    • /
    • 2021
  • We fabricated BiAlO thin film by a solution process with a brush coating to be used as liquid crystal (LC) alignment layer. Solution-processed BiAlO was coated on the glass substrate by brush process. Prepared thin films were annealed at different temperatures of 80℃, 180℃, and 280℃. To verify whether the BiAlO film was formed properly, X-ray photoelectron spectroscopy analysis was performed on Bi and Al. Using a crystal rotation method by polarized optical microscopy, LC alignment state was evaluated. At the annealing temperature of 280℃, the uniform homogenous LC alignment was achieved. To reveal the mechanism of LC alignment by brush coating, field emission scanning electron microscope was used. Through this analysis, spin-coated and brush coated film surface were compared. It was revealed that physical anisotropy was induced by brush coating at a high annealing temperature. Particles were aligned in one direction along which brush coating was made, resulting in a physical anisotropy that affects a uniform LC alignment. Therefore, it was confirmed that brush coating combined with BiAlO thin film annealed at high temperature has a significant potential for LC alignment.

Effect of Spin Coating Speed on Characteristics of Polyimide Alignment Layer for Liquid Crystal Display (스핀 코팅 공정에 따른 액정디스플레이용 폴리이미드 배향막 특성 분석)

  • Kim, Jin-Ah;Choi, Se-Hoon;Park, Hong-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.58-65
    • /
    • 2022
  • The field of liquid crystal display (LCD) is constantly in the spotlight and the process of depositing an alignment layer in the LCD manufacturing process is very important to obtain excellent performance such as low-power driving and high-speed response to improve LCD performance. Therefore, research on liquid crystal (LC) alignment is being actively conducted. When manufacturing LCD, it is necessary to consider the effect of the alignment layer thickness as one of the factors affecting various LCD performances. In addition, previous studies confirmed the LC alignment characteristics correlate with the rotation speed in the spin coating process. Therefore, the electro-optical properties of the LCD were investigated by manufacturing a polyimide alignment layer by varying the rotation speed in the spin coating process in this study. It was confirmed that the thickness of the polyimide alignment layer was controlled according to the spin coating conditions. The average transmittances of anti-parallel LC cells at the spin coating speed of 2,500 rpm and 3,000 rpm are about 60%, which indicates that the LC cell has relatively higher performance. At the spin coating speed of 3,000 rpm, the voltage-transmittance curve of twisted nematic (TN) LC cell was below 1.5 V, which means that the TN LC cell operated at a low power. In addition, high-speed operating characteristics were confirmed with a response time of less than 30 ms. From these derived data, we confirmed that the ideal spin coating speed is 3,000 rpm. And these results provide an optimized polyimide alignment layer process when considering enhanced future LCD manufacturing.

Dynamics and Instability of a Polymeric Paint in Roll Coating Process for Automotive Pre-coating Application (자동차 선도장을 위한 롤코팅 공정에서 고분자 도료의 동적 거동 및 불안정성)

  • Kim, Jin-Ho;Lee, In-Jun;Noh, Seung-Man;Kang, Choong-Yeol;Nam, Joon-Hyun;Jung, Hyun-Wook;Park, Jong-Myung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.574-579
    • /
    • 2011
  • 3-Roll coating process as a key application technology for manufacturing automotive pre-painted metal-sheets has been studied. The 3-Roll coating system for this study consists of pick-up roll for picking up and distributing coating liquid from the reservoir, metering roll to properly meter coating liquid in metering gap regime, and applicator roll for directly transferring liquid into metal-sheet surface. Flow dynamics and operable coating windows of a polymeric paint (primer) with shear-thinning rheological property have been correlated with processing parameters such as speed ratio and metering gap between pick-up and metering rolls. In the uniform coating regime, dry coating thickness increased with increasing metering gap or decreasing speed ratio. Ribbing and cascade instabilities were observed in low speed and high speed ratio conditions, respectively. It is revealed that lower speed ratio makes severity and wavelength of the ribbing increase, aggravating flow instability in coating systems.

Effect of Ni-Flash Coating on Hydrogen Embrittlement and Liquid Metal Embrittlement of Ultra-High-Strength Electrogalvanized Steel Sheet (Ni-Flash 코팅이 초고강도 전기아연 도금강재의 수소취화 및 액상금속취화에 미치는 영향)

  • Seon Ho Oh;Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.302-309
    • /
    • 2024
  • The purpose of this study was to elucidate effects of a thin (tens to hundreds of nanometers) Ni-flash coating layer on hydrogen embrittlement (HE) and liquid metal embrittlement (LME) in ultra-high-strength electrogalvanized steel with a tensile strength of more than 1 GPa. Various experimental and analytical methods, including thermal desorption spectroscopy, slow strain rate testing, resistance spot welding, X-ray diffraction, and metallographic observation, were employed. Results showed that an increase in Ni target amount for flash coating resulted in a decrease in diffusible hydrogen content during electrogalvanizing, resulting in a significant decrease in HE sensitivity. Moreover, a Ni target amount of more than 1000 mg/m2 drastically reduced the occurring frequency and average depth of LME. This reduction could be primarily attributed to formation of Zn-Ni intermetallic phases during the welding process that could inhibit liquefaction of intermetallic phases in the heat-affected zone. This study provides a desirable Ni target amount for Ni-flash coating on ultra-high-strength steels conducted in a continuous galvanizing line or a high-speed batch line to achieve high resistance to both HE and LME.

Evaluation of the Coating Liquid Sprayed on Landscape Plants to Prevent De-icing Stresses - Focus on Chlorophyll Fluorescence Analysis - (조경수목의 제설제 피해저감을 위한 엽면코팅제 처리효과 분석 - 엽록소 형광분석법을 중심으로 -)

  • Kwon, Hee-Bum;Kim, Tae-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.29-36
    • /
    • 2008
  • This study examined the de-icing agents' stresses on Pinus strobus and Pinus thunbergii by chlorophyll fluorescence analysis. The assumption of this study was that photosynthetic efficiency was changed by de-icing agents applied onto highways in winter by altering the concentration of the de-icier, types of de-icer and leaf surface coating liquid application. The practical purpose of this study was to investigate the de-icing gents stresses on Pinus strobus by the highway area where de-icing agents were used frequently and to discover out minimizing stratages to prevent further damages. or this simulation study, a sample plot was established in Bogae-myeon, Anseong, Gyeonggi-do and Pinus strobus and Pinus thunbergii were planted for the examination in April, 2005. Five types of de-icing agents - NaCl, $CaCl_2$, T product(NS40:low cWoride de-icer type), NaCl+$CaCl_2$ and T product+$CaCl_2$ - were selected and the their concentration was altered to 0%, 5%, and 9%. Five types of de-icing agents were applied to both trees treated by a leaf surface coating liquid and trees not treated by leaf surface coating liquid. For the fluorescence analysis, the leaf surface coating liquid, which was diluted by 10 times, was sprkinkled onto the two tree species three days prior to gathering samples. Sample leaves from the two tree species were gathered at 10 o'clock in the morning of mid-August, 2006 and brought to the laboratory within three hours to be dipped in different concentrations (0%, 5%, or 9%) of the five de-icing agents for two minutes. Then the eaves were placed on the filter paper dipped in each solution on a petri dish, sealed with polyethylene film and kept in a growth chamber at $22^{\circ}C$ for 72 hours. Out of the growth chamber, the leaves were treated with a chorophyll fluorescence reaction analyzer for 30 minutes to measure the initial light acceptance rate(Fo), maximum light acceptance ate(Fv/Fm), light acceptance usage(F' q/F' m) and optical electron delivery coefficient(qP). As a result, Pinus strobus' initial light acceptance rate(Fo) decreased as T product and NaCl increased in concentration, and $Cal_2$ did not reduce much with the eaf surface coating liquid application. Maximum light acceptance rate(Fv/Fm) and light acceptance usage(F' q/F' m) decreased sharply as T product and NaCl increased in concentration and NaCl+$CaCl_2$ and T product+$CaCl_2$ did not reduce much with leaf surface coating liquid application. Optical electrons delivery coefficient (qP) decreased as T product increased in concentration on trees without the leaf surface coating liquid application and all other de-icing agents did not show much reduction. As for Pinus thunbergii, the initial light acceptance rate(Fo) decreased as T product increased in concentration, but the maximum light acceptance rate(Fv/Fm) was not reduced much by changes in concentration. light acceptance usage(F' q/F' m) decreased as NaCl increased in concentration and optical electron delivery coefficient(qP) decreased as NaCl increased in concentration in both with and without leaf surface coating liquid application. In conclusion, it was possible to plant Pinus strobus if spraying leaf surface coating liquid or cleaning deicing salt to prevent the damage caused by deicing agents was more economical than replacing the trees. If not, it was better to plant Pinus thunbergii. Another way to decrease the deicing gents stresses of landscape plants would be planting the trees further away from the roads even though it might take longer period to display its planting functions.

Effects of Metal Coating on SiCp on Wettability and Interfacial Strength of Al/SiCp Composites (Al/SiCp 복합재료에서 보강재 표면의 금속 피복층이 젖음성과 계면 강도에 미치는 영향)

  • Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.360-367
    • /
    • 1995
  • Effects of metal coating treatment on SiC particle on wetting behavior and interfacial strength were studied. Experimental variables are included types of coated metallic films such as Cu and Ni-P, and temperatures of heat-treatment under vacuum. The experimental results concerning wetting phenomena of liquid Al on SiC, showed that coating treatment of metallic film on SiC particles remarkably improves the wetting behavior of liquid Al on SiC, especially in the case of Ni-P coating. The interfacial strength of Al/SiC composites made of coated SiC plate was higher than that of the composite with non-coated SiC plate although the coating treatment was not perfect.

  • PDF

A Numerical Study on the Combined Flow and Evaporation During Spin Coating Process (증발을 고려한 회전코팅 공정에 대한 수치해석적 연구)

  • Im, Ik-Tae;Kim, Kwang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.59-64
    • /
    • 2001
  • The fluid flow, mass transfer and film thickness variation during a wafer spin coating process are numerically studied. Governing equations for the cylindrical coordinates are simplified using the similarity transformation and solved efficiently using the finite difference method. Concentration dependent viscosity and the binary diffusivity of the coating liquid are used in the analysis. The time variational velocity components of the coating liquid and the film thickness are analyzed according to the various spin speed. When the evaporation is considered, the flow decease in the early times due to the increase of the viscosity and the resultant flow resistance. Effects of the two film thinning mechanism, the flow-out and evaporation are also considered in the analysis.

  • PDF

Effect of Thermal Barrier Coating and Film Cooling Condition on the Cooling Performance of Liquid-propellant Rocket Engine Combustor (액체로켓 엔진 연소기의 열차폐 코팅 및 막냉각 조건에 따른 냉각 성능 변화 해석)

  • Joh, Miok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.52-59
    • /
    • 2014
  • The effect of ceramic thermal barrier coating thickness on the cooling performance of a liquid-propellant rocket engine combustor has been investigated through combustion/cooling performance analysis whose results verified against measured data from hot-firing tests. Also have been confirmed the effects of film cooling amount near the face plate on the coolant temperature and on the thermal barrier coating surface temperature. Some important points to be considered for designing cooling schemes for regeneratively cooled rocket engine combustor have been drawn and reviewed from present study and further verification of the analysis tool should be performed in the future.

UV-curable liquid crystal for a retarder

  • Hasebe, Hiroshi;Kuwana, Yasuhiro;Nakata, Hidetoshi;Nishiyama, Isa;Takeuchi, Kiyofumi;Takatsu, Haruyoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.159-162
    • /
    • 2009
  • A liquid crystalline monomer is applicable to fabricate a retarder in which various types of alignment are fixed. We have developed the monomer, UV-curable liquid crystal optimized for coating processes. Applications and materials for the retarder are reviewed.

  • PDF

증발을 고려한 Wafer Spin Coating 박막 예측에 관한 수치 해석적 연구

  • 노영미;임익태;김광선
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.20-26
    • /
    • 2002
  • The fluid flow, mass transfer, heat transfer and film thickness variation during the spin coating process are numerically studied. The model is said to be 1-dimensional because radial variations in film thickness, concentration and temperature are ignored. The finite difference method is employed to solve the equations that are simplified using the similarity transformation. In early time film thinning is due to the radial convective outflow. However that slows during the first seconds of spinning so the film thinning due to evaporation of solvent becomes sole. The time various film thickness is analyzed according to the var ious solvent fraction in the coating liquid and in the bulk of the overlying gas and the temperature variation in the liquid film during the spin coating is estimated.

  • PDF