• 제목/요약/키워드: Coating Agent

검색결과 376건 처리시간 0.025초

Modified membrane with antibacterial properties

  • Aryanti, P.T.P.;Sianipar, M.;Zunita, M.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.463-481
    • /
    • 2017
  • Bacteria have been considered as a major foulant that initiates the formation of biofilm on the polymeric membrane surface. Some polymeric membranes are naturally antibacterial and have low fouling properties, however, numerous efforts have been devoted to improve their antibacterial performance. These modifications are mostly carried out through blending the membrane with an antibacterial agent or introducing the antibacterial agent on the membrane surface by chemical grafting. Currently, a significant number of researches have reported nanocomposite membrane as a new approach to fabricate an excellent antibacterial membrane. The antibacterial nanoparticles are dispersed homogenously in membrane structure by blending method or coating onto the membrane surface. Aim of the modifications is to prevent the initial attachment of bacteria to membrane surface and kill bacteria when attached on the membrane surface. In this paper, several studies on antibacterial modified membranes, particularly for water treatment, will be reviewed comprehensively. Special attention will be given on polymeric membrane modifications by introducing antibacterial agents through different methods, such as blending, grafting, and coating.

Synthesis of AlO(OH) Nano Colloids from γ-Al2O3 via Reversible Process (γ-Al2O3로부터 가역과정을 경유한 AlO(OH) 나노콜로이드의 합성)

  • Cho, Hyun-Ran;Kim, Sook-Hyun;Park, Byung-Ki
    • Journal of the Korean Ceramic Society
    • /
    • 제46권3호
    • /
    • pp.288-294
    • /
    • 2009
  • The platelet AlO(OH) nano colloids were prepared by hydrothermal reaction of the $\gamma-Al_2O_3$ obtained with dehydration of $\gamma$-AlO(OH) and dilute $CH_3COOH$ solution. In hydrothermal reaction process, reversible reaction was accompanied between $\gamma-Al_2O_3$ and AlO(OH), and hydrothermal reaction temperature, hydrothermal reaction time and $CH_3COOH$ concentration had an effect on the crystal structure, surface chemical property, surface area, pore characteristics and crystal morphology of the AlO(OH) nano colloid particles. In this study, it was investigated to the hydrothermal reaction condition of the AlO(OH) nano colloid for using catalyst support, heat resisting agent, adsorbents, binder, polishing agent and coating agent. The crystal structure, surface area, pore volume and pore size of the platelet AlO(OH) nano colloids were investigated by XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method in liquid nitrogen temperature.

A Study on the Adhesion Improvement of Immersion Copper Coatings using Complexing Agent (착화제를 이용한 치환동 도금층의 밀착력 향상에 관한 연구)

  • Koo, Seokbon;Jeon, Jumi;Hur, Jinyoung;Lee, Hongkee
    • Journal of the Korean institute of surface engineering
    • /
    • 제48권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Amino-carboxyl acid as a complexing agent in acid copper sulfate solution was utilized to improve the adhesion of immersion copper layer for steel wire. According to the tape test results, regardless of alloy composition of the wire, the adhesion of immersion copper layer was improved with the addition of amino-carboxyl acid. The incorporation of H and Fe in the plating layer was analyzed by TOF-SIMS. The H and Fe were detected at the entire coating layer without any addition of amino-carboxyl acid. However, with addition of amino-carboxyl acid, the H and Fe were scarcely detected at the coating layer.

Mussel-Inspired, Fast Surface Modification of Solid Substrates

  • Hong, Sang-Hyeon;Kang, Sung-Min;Lee, Hae-Shin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.201-201
    • /
    • 2011
  • Recently, mussel-inspired surface modification, called polydopamine coating has been extensively implemented to many areas, due to its material versatility and ease to use. In particular, incubation of substrates in an alkaline dopamine solution resulted in self-polymerization of dopamine and modified variety of material surfaces, including noble metals, metal oxides, ceramics, and synthetic polymers. However, the polydopamine coating has a drawback to practical use; it takes more than 12 hrs to introduce sufficient polydopamine layers to solid substrates. Here, we investigated the rate-enhanced polydopamine coating by varying reaction conditions: pH, concentration, and the addition of the oxidizing agent. As a result, the optimum condition for fast polydopamine coating was found, and solid substrates were efficiently coated with polydopamine layers in just few minutes using the condition. The polydopamine-modified surface was characterized by XPS and contact angle goniometry, and the biocompatibility of the modified surface was also proved by cell attachment test.

  • PDF

2-Packaged Polyurethane Coatings(II);Preparation and Physical Properties of Polyurethane Coatings (2액형 폴리우레탄 도료에 관한 연구(II);폴리우레탄 도료의 제조와 도막물성)

  • Kim, Seon-Kil;Chung, Kyeng-Teak;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • 제12권1호
    • /
    • pp.19-27
    • /
    • 1995
  • The 2-packaged polyurethane coatings were synthesized, blending pheylmodified polyesters(of which synthetic methods were reported in the previous paper), Desmodur L-75(polyisocyanate wide1y used for coatings), wetting-dispersing agent, white pigment. etc. A variety of coating properties were tested for the coating treatment polyurethane coationgs. Compared with conventional 2-packaged polyure-thane coating, abrasion resistance and lightness index difference of the ones synthesized in the present work were somewhat decreased, but the coating properties such as hardness, gloss specular, cross hatch adhesion. etc. were improved. Especially, resistance against chemical reagents and salt were strikingly improved. In addition. the coationgs had short drying time and long pot-life. This shows that the coationgs are appropriate for rapid drying coatings.

Chemical Resistance Characteristics of Concrete Surface Coating Agent with Flexibility (유연성을 갖는 콘크리트 표면보호재의 내화학적 특성)

  • Han, Sang-Hoon;Yoon, Ju-Yong;Lee, Byung-Ro;Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • 제27권3호
    • /
    • pp.96-103
    • /
    • 2012
  • The purpose of this study is evaluate the ability of coating materials developed in order to prevent the durability deterioration of the concrete structure. Neutralization test, freezing and thawing test, and sulfate resistance test were performed in this study. Test results show that the developed coating material is effective against durability deterioration.

Airtightness performance evaluation of ultra-high performance concrete using polymer coating materials (그래핀을 활용한 폴리머 도막재료의 물리적 특성 평가)

  • Lee, Hyun Seung;Kim, Kang Min;Yoon, Seob;Seo, Tae Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.257-258
    • /
    • 2023
  • In this study, it was conducted to improve the physical properties of VAE polymer matrix used as a coating material. A nanocomposite was manufactured using graphene as a reinforcing agent based on a VAE matrix. As a result, improvements in tensile strength, adhesion strength, and porosity were confirmed.

  • PDF

A STUDY ON THE BOND STRENGTH OF REPAIR RESIN TO THE SURFACE TREATED COMPOSITE RESINS (표면처리된 복합레진에 대한 수리용 레진의 결합강도에 관한 연구)

  • Kang, Hyun-Sook;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • 제20권2호
    • /
    • pp.487-507
    • /
    • 1995
  • Composite resin repair requires strong bond strength between the new and old materials. The objective of the current study was to identify the optimal treatments for sufficient bond strengths. Bondings between same kinds of materials and cross bondings using chemical curing composites and light curing composites were tested. Surface treatments included the methods of sand-blasting, acid etching and coating of bonding agent. Seven kinds cases of combinations from three kinds of methods were experimented and compared with a control group of which surfaces were highly polished. Measurements of shear bond strength and observations of surface morphologic changes using a scanning electron microscope were done. Following conclusions were drawn : 1. The highest bond strength among composite resins were exhibited by the treatment of the sand-blasting and the coating of bonding agent. 2. Acid etched surfaces showed the lowest bond strength. Bond strengths obtained from experimental groups including acid etching were lower than those obtained from same kinds of experimental groups without acid etching. 3. Simple method of the coating of bonding agent produced the slightly increased bond strength on chemical curing composite and reduced bond strength on light curing composite. 4. Bonding surfaces of chemical curing composite resin showed slightly higher bond strengths than light curing composite resin, however significant differences were not confirmed statistically. 5. More significant irregular surfaces were created by sand-blasting method than acid etching method. 6. A principal component of fillers of both resins was silicon. Acid etching method produced the seperations and degradations of fillers, these were significant on light curing composite resins which containing barium fillers.

  • PDF

Structural Adjustment of In-Situ Surface-Modified Silica Matting Agent and Its Effect on Coating Performance

  • Xu, Qingna;Ji, Tongchao;Tian, Qingfeng;Su, Yuhang;Niu, Liyong;Li, Xiaohong;Zhang, Zhijun
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850137.1-1850137.9
    • /
    • 2018
  • A series of silica surface-capped with hexamethyldisilazane (denoted as $H-SiO_2$) were prepared by liquid-phase in-situ surface-modification method. The as-obtained $H-SiO_2$ was incorporated into acrylic amino (AA) baking paint to obtain AA/$H-SiO_2$ composite extinction paints and/or coatings. $N_2$ adsorption-desorption tests were conducted to determine the specific surface area as well as pore size and pore volume of $H-SiO_2$. Moreover, the effects of $H-SiO_2$ matting agents on the physical properties of AA paint as well as the gloss and transmittance of AA-based composite extinction coatings were investigated. Results show that $H-SiO_2$ matting agents possess a large specific surface area and pore volume than previously reported silica obtained by liquid-phase method. Besides, they have better dispersibility in AA baking paint than the unmodified silica. Particularly, $H-SiO_2$ with a silica particle size of $6.7{\mu}m$ and the dosage of 4% (mass fraction) provides an extinction rate of 95.2% and a transmittance of 79.3% for the AA-based composite extinction coating, showing advantages over OK520, a conventional silica matting agent. Along with the increase in the silica particle size, $H-SiO_2$ matting agents cause a certain degree of increase in the viscosity of AA paint as well as a noticeable decrease in the gloss of the AA-based composite extinction coating, but they have insignificant effects on the hardness and adhesion to substrate of the AA-based composite coatings. This means that $H-SiO_2$ matting agents could be well applicable to preparing low-viscosity and low-gloss AA-based matte coatings.

Effect of Surface Sizing with Cationic Polymer Additives on the Coating Structure and Coated Paper Properties (양성고분자에 의한 표면사이징과 이에 의한 도공층의 구조 및 도공지 물성 변화)

  • Jun, Dae-Gu;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제40권1호
    • /
    • pp.1-8
    • /
    • 2008
  • It is essential to use base papers having proper surface characteristics in coating operation for improving coated paper quality and coater runnability. To fulfill these purposes, surface sizing of coating base stock with oxidized starch is commonly practiced. Use of cationic starch for surface sizing improves coated paper quality since cationic starch penetrates less into paper structure. The immediate objective of this study was to examine the influence of surface sizing with starch solutions containing cationic polymers on the rheology of coating colors and the effect on physical properties of coated papers. Changes of rheological characteristics of coating colors placed on the plastic substrate surface sized with cationic and anionic starch were determined. Results of rheological test showed that cationic polymer surface sizing agent increased electrostatic interaction with coating colors and increased storage modulus. This new technology of using cationic polymer as surface sizing additive was considered to be advantageous for base papers at low basis weights since it would improve the coverage and optical properties of coated papers.