DOI QR코드

DOI QR Code

Modified membrane with antibacterial properties

  • Aryanti, P.T.P. (Chemical Engineering Department, Jenderal Achmad Yani University) ;
  • Sianipar, M. (Research Center of Nanosciences and Nanotechnology, ITB) ;
  • Zunita, M. (Chemical Engineering Department, ITB) ;
  • Wenten, I.G. (Chemical Engineering Department, ITB)
  • 투고 : 2016.09.09
  • 심사 : 2017.05.17
  • 발행 : 2017.09.25

초록

Bacteria have been considered as a major foulant that initiates the formation of biofilm on the polymeric membrane surface. Some polymeric membranes are naturally antibacterial and have low fouling properties, however, numerous efforts have been devoted to improve their antibacterial performance. These modifications are mostly carried out through blending the membrane with an antibacterial agent or introducing the antibacterial agent on the membrane surface by chemical grafting. Currently, a significant number of researches have reported nanocomposite membrane as a new approach to fabricate an excellent antibacterial membrane. The antibacterial nanoparticles are dispersed homogenously in membrane structure by blending method or coating onto the membrane surface. Aim of the modifications is to prevent the initial attachment of bacteria to membrane surface and kill bacteria when attached on the membrane surface. In this paper, several studies on antibacterial modified membranes, particularly for water treatment, will be reviewed comprehensively. Special attention will be given on polymeric membrane modifications by introducing antibacterial agents through different methods, such as blending, grafting, and coating.

키워드

참고문헌

  1. Alpatova, A., Kim, E.S., Sun, X., Hwang, G., Liu, Y. and Gamal El-Din, M. (2013), "Fabrication of porous polymeric nanocomposite membranes with enhanced anti-fouling properties: Effect of casting composition", J. Membr. Sci., 444, 449-460. https://doi.org/10.1016/j.memsci.2013.05.034
  2. Altan, M. and Yildirim, H. (2012), "Mechanical and antibacterial properties of injection molded Polypropylene/$TiO_2$ nano-composites: effects of surface modification", J. Mater. Sci. Technol., 28(8), 686-692. https://doi.org/10.1016/S1005-0302(12)60116-9
  3. Anitha, S., Brabu, B., John Thiruvadigal, D., Gopalakrishnan, C. and Natarajan, T.S. (2013), "Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO", Carbohydr Polym., 97(2), 856-863. https://doi.org/10.1016/j.carbpol.2013.05.003
  4. Ariono, D., Aryanti, P.T.P., Subagjo, S. and Wenten, I.G. (2017), "The effect of polymer concentration on flux stability of polysulfone membrane", AIP Conference Proceedings, 1788(1), 030048.
  5. Ariono, D., Purwasasmita, M. and Wenten, I.G. (2016), "Brine effluents: Characteristics, environmental impacts, and their handling", J. Eng. Technol. Sci., 48(4), 367-387. https://doi.org/10.5614/j.eng.technol.sci.2016.48.4.1
  6. Aruoja, V., Dubourguier, H.C., Kasemets, K. and Kahru, A. (2009), "Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchneriella subcapitata", Sci. Total Environ., 407(4), 1461-1468. https://doi.org/10.1016/j.scitotenv.2008.10.053
  7. Aryanti, P.T.P., Joscarita, S.R., Wardani, A.K., Subagjo, S., Ariono, D. and Wenten, I.G. (2016), "The influence of PEG400 and acetone on polysulfone membrane morphology and fouling behaviour", J. Eng. Technol. Sci., 48(2), 135-149. https://doi.org/10.5614/j.eng.technol.sci.2016.48.2.1
  8. Aryanti, P.T.P., Yustiana, R., Purnama, R. and Wenten, I.G. (2015), "Performance and characterization of PEG400 modified PVC ultrafiltration membrane", Membr. Water Treat., 6(5), 379-392. https://doi.org/10.12989/mwt.2015.6.5.379
  9. Bagheri, M., Beyermann, M. and Dathe, M. (2009), "Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum", Antimicrob. Agents Chemother., 53(3), 1132-1141. https://doi.org/10.1128/AAC.01254-08
  10. Basri, H., Ismail, A.F. and Aziz, M. (2011), "Polyethersulfone (PES)-silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity", Desalination, 273(1), 72-80. https://doi.org/10.1016/j.desal.2010.11.010
  11. Ben-Sasson, M., Lu, X., Nejati, S., Jaramillo, H. and Elimelech, M. (2016), "In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles", Desalination, 388, 1-8. https://doi.org/10.1016/j.desal.2016.03.005
  12. Bergbreiter, D.E. and Chance, B.S. (2007), ""Click"-based covalent layer-by-layer assembly on polyethylene using water-soluble polymeric reagents", Macromolecules, 40(15), 5337-5343. https://doi.org/10.1021/ma0701134
  13. Booshehri, A.Y., Wang, R. and Xu, R. (2013), "The effect of re-generable silver nanoparticles/multi-walled carbon nanotubes coating on the antibacterial performance of hollow fiber membrane", Chem. Eng. J., 230, 251-259. https://doi.org/10.1016/j.cej.2013.06.068
  14. Chen, M., Zhao, Y., Yang, W. and Yin, M. (2013), "UV-irradiation-induced templated/in-situ formation of ultrafine silver/polymer hybrid nanoparticles as antibacterial", Langmuir, 29(51), 16018-16024. https://doi.org/10.1021/la4041776
  15. Chung, Y.T., Mahmoudi, E., Mohammad, A.W., Benamor, A., Johnson, D. and Hilal, N. (2017), "Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control", Desalination, 402, 123-132. https://doi.org/10.1016/j.desal.2016.09.030
  16. Cooper, A., Oldinski, R., Ma, H., Bryers, J.D. and Zhang, M. (2013), "Chitosan-based nanofibrous membranes for antibacterial filter applications", Carbohyd. Polym., 92(1), 254-259. https://doi.org/10.1016/j.carbpol.2012.08.114
  17. Cordeiro, A.L. and Werner, C. (2011), "Enzymes for antifouling strategies", J. Adhes. Sci. Technol., 25(17), 2317-2344. https://doi.org/10.1163/016942411X574961
  18. Cruz, M.C., Ruano, G., Wolf, M., Hecker, D., Castro Vidaurre, E., Schmittgens, R. and Rajal, V.B. (2015), "Plasma deposition of silver nanoparticles on ultrafiltration membranes: Antibacterial and anti-biofouling properties", Chem. Eng. Res. Des., 94, 524-537. https://doi.org/10.1016/j.cherd.2014.09.014
  19. Daels, N., De Vrieze, S., Sampers, I., Decostere, B., Westbroek, P., Dumoulin, A., Dejans, P., De Clerck, K. and Van Hulle, S.W.H. (2011), "Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter", Desalination, 275(1-3), 285-290. https://doi.org/10.1016/j.desal.2011.03.012
  20. Dallas, P., Sharma, V.K. and Zboril, R. (2011), "Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives", Adv. Colloid Interface Sci., 166(1), 119-135. https://doi.org/10.1016/j.cis.2011.05.008
  21. Damodar, R.A., You, S.J. and Chou, H.H. (2009), "Study the self cleaning, antibacterial and photocatalytic properties of $TiO_2$ entrapped PVDF membranes", J. Hazard Mater., 172(2-3), 1321-1328. https://doi.org/10.1016/j.jhazmat.2009.07.139
  22. Dong, C., Wang, Z., Wu, J., Wang, Y., Wang, J. and Wang, S. (2017), "A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property", Desalination, 401, 32-41. https://doi.org/10.1016/j.desal.2016.06.034
  23. Ferrando, D., Ziemba, C. and Herzberg, M. (2017), "Revisiting interrelated effects of extracellular polysaccharides during biofouling of reverse osmosis membranes: Viscoelastic properties and biofilm enhanced osmotic pressure", J. Membr. Sci., 523, 394-401. https://doi.org/10.1016/j.memsci.2016.08.071
  24. Friedman, L., Harif, T., Herzberg, M. and Mamane, H. (2016), "Mitigation of biofilm colonization on various surfaces in a model water flow system by use of UV treatment", Water Air Soil Pollut., 227(2), 1-16. https://doi.org/10.1007/s11270-015-2689-7
  25. Fu, J., Ji, J., Yuan, W. and Shen, J. (2005), "Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan", Biomaterials, 26(33), 6684-6692. https://doi.org/10.1016/j.biomaterials.2005.04.034
  26. Gao, G., Yu, K., Kindrachuk, J., Brooks, D.E., Hancock, R.E.W. and Kizhakkedathu, J.N. (2011), "Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity", Biomacromol., 12(10), 3715-3727. https://doi.org/10.1021/bm2009697
  27. Giuliani, A., Pirri, G., Bozzi, A., Di Giulio, A., Aschi, M. and Rinaldi, A. (2008), "Antimicrobial peptides: natural templates for synthetic membrane-active compounds", Cell. Mol. Life Sci., 65(16), 2450-2460. https://doi.org/10.1007/s00018-008-8188-x
  28. Glinel, K., Thebault, P., Humblot, V., Pradier, C.M. and Jouenne, T. (2012), "Antibacterial surfaces developed from bio-inspired approaches", Acta Biomaterialia, 8(5), 1670-1684. https://doi.org/10.1016/j.actbio.2012.01.011
  29. Goh, P., Ng, B., Lau, W. and Ismail, A. (2015), "Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment", Sep. Purif. Rev., 44(3), 216-249. https://doi.org/10.1080/15422119.2014.926274
  30. Guo, W., Ngo, H.H. and Li, J. (2012), "A mini-review on membrane fouling", Bioresour. Technol., 122, 27-34. https://doi.org/10.1016/j.biortech.2012.04.089
  31. Hakizimana, J.N., Gourich, B., Vial, C., Drogui, P., Oumani, A., Naja, J. and Hilali, L. (2016), "Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis", Desalination, 393, 90-101. https://doi.org/10.1016/j.desal.2015.12.025
  32. Hassanien, A., El-Hashash, M., Mekewi, M., Guirguis, D. and Ramadan, A. (2013), "Fabrication of polyvinyl alcohol/cellulose acetate (PVA/CA/PEG) antibacterial membrane for potential water purification application", Hydrol Current Res., 4, 1-6.
  33. Himma, N.F., Wardani, A.K. and Wenten, I.G. (2017), "Preparation of superhydrophobic polypropylene membrane using dip-coating method: the effects of solution and process parameters", Polym. Plast. Technol. Eng., 56(2), 184-194. https://doi.org/10.1080/03602559.2016.1185666
  34. Himma, N.F., Anisah, S., Prasetya, N. and Wenten, I.G., "Advances in preparation, modification, and application of polypropylene membrane", J. Polym. Eng., 36(4) (2016) 329. https://doi.org/10.1515/polyeng-2015-0112
  35. Hu, M. and Mi, B. (2013), "Enabling graphene oxide nanosheets as water separation membranes", Environ. Sci. Technol., 47(8), 3715-3723. https://doi.org/10.1021/es400571g
  36. Huang, X., Marsh, K.L., McVerry, B.T., Hoek, E.M.V. and Kaner, R.B. (2016), "Low-fouling antibacterial reverse osmosis membranes via surface grafting of graphene oxide", ACS App. Mater. Interf., 8(23), 14334-14338. https://doi.org/10.1021/acsami.6b05293
  37. Ignatova, M., Manolova, N. and Rashkov, I. (2007), "Novel antibacterial fibers of quaternized chitosan and poly (vinyl pyrrolidone) prepared by electrospinning", European Polym. J., 43(4), 1112-1122. https://doi.org/10.1016/j.eurpolymj.2007.01.012
  38. Isawi, H., El-Sayed, M.H., Feng, X., Shawky, H. and Mottaleb, M.S.A. (2016), "Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles", App. Surf. Sci., 385, 268-281. https://doi.org/10.1016/j.apsusc.2016.05.141
  39. Jabur, A.R., Abbas, L.K. and Moosa, S.A. (2016), "Fabrication of electrospun Chitosan/Nylon 6 anofibrous membrane toward metal ions removal and antibacterial effect", Adv. Mat. Sci. Eng., 2016, 10.
  40. Jiang, J., Zhu, L., Zhu, L., Zhang, H., Zhu, B. and Xu, Y. (2013), "Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong Hydrogen-Bonded Poly (N-vinyl pyrrolidone)", ACS App. Mater. Interf., 5(24), 12895-12904. https://doi.org/10.1021/am403405c
  41. Jiang, S.P., Liu, Z. and Tian, Z.Q. (2006), "Layer-by-Layer Self-Assembly of composite polyelectrolytenafion membranes for direct methanol fuel cells", Adv. Mater., 18(8), 1068-1072. https://doi.org/10.1002/adma.200502462
  42. Jung, J.H., Hwang, G.B., Lee, J.E. and Bae, G.N. (2011), "Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration", Langmuir, 27(16), 10256-10264. https://doi.org/10.1021/la201851r
  43. Kamal, T., Ali, N., A Naseem, A., B Khan, S. and M Asiri, A. (2016), "Polymer nanocomposite membranes for antifouling nanofiltration", Recent Pat Nanotechnol., 10(3), 189-201. https://doi.org/10.2174/1872210510666160429145704
  44. Karkhanechi, H., Takagi, R. and Matsuyama, H. (2014), "Biofouling resistance of reverse osmosis membrane modified with polydopamine", Desalination, 336, 87-96. https://doi.org/10.1016/j.desal.2013.12.033
  45. Karkhanechi, H., Takagi, R., Ohmukai, Y. and Matsuyama, H. (2013), "Enhancing the antibiofouling performance of RO membranes using Cu (OH) 2 as an antibacterial agent", Desalination, 325, 40-47. https://doi.org/10.1016/j.desal.2013.06.015
  46. Kausar, A. (2016), "Scientific potential of chitosan blending with different polymeric materials: A review", J. Plast. Film Sheeting, 8756087916679691.
  47. Khan, M.M.A. and Rafiuddin (2012), "Preparation, electrochemical characterization and antibacterial study of polystyrene-based magnesium-strontium phosphate composite membrane", Mater. Sci. Eng. C, 32(5), 1210-1217. https://doi.org/10.1016/j.msec.2012.03.010
  48. Khan, S.B., Alamry, K.A., Bifari, E.N., Asiri, A.M., Yasir, M., Gzara, L. and Ahmad, R.Z. (2015), "Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection", J. Ind. Eng. Chem., 24, 266-275. https://doi.org/10.1016/j.jiec.2014.09.040
  49. Kharlampieva, E., Kozlovskaya, V. and Sukhishvili, S.A. (2009), "Layer-by-Layer Hydrogen-Bonded polymer films: from fundamentals to applications", Adv. Mater., 21(30), 3053-3065. https://doi.org/10.1002/adma.200803653
  50. Khoiruddin, Hakim, A.N. and Wenten, I.G. (2014), "Advances in electrodeionization technology for ionic separation-A review", Membr. Water Treat., 5(2), 87-108. https://doi.org/10.12989/mwt.2014.5.2.087
  51. Khoiruddin, Widiasa, I.N. and Wenten, I.G. (2014), "Removal of inorganic contaminants in sugar refining process using electrodeionization", J. Food Eng., 133, 40-45. https://doi.org/10.1016/j.jfoodeng.2014.02.015
  52. Khoiruddin, K. and Wenten, I.G. (2016), "Investigation of electrochemical and morphological properties of mixed matrix Polysulfone-Silica anion exchange membrane", J. Eng.Technol. Sci., 48(1), 1-11. https://doi.org/10.5614/j.eng.technol.sci.2016.48.1.1
  53. Krishnamoorthy, M., Hakobyan, S., Ramstedt, M. and Gautrot, J.E. (2014), "Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings", Chem. Rev., 114(21), 10976-11026. https://doi.org/10.1021/cr500252u
  54. Kumar, A. and Dhawan, A. (2013), "Genotoxic and carcinogenic potential of engineered nanoparticles: an update", Arch Toxicol., 87(11), 1883-1900. https://doi.org/10.1007/s00204-013-1128-z
  55. Kumar, R., Isloor, A.M., Ismail, A.F. and Matsuura, T. (2013), "Synthesis and characterization of novel water soluble derivative of chitosan as an additive for polysulfone ultrafiltration membrane", J. Membr. Sci., 440, 140-147. https://doi.org/10.1016/j.memsci.2013.03.013
  56. Leong, S., Razmjou, A., Wang, K., Hapgood, K., Zhang, X. and Wang, H. (2014), "$TiO_2$ based photocatalytic membranes: A review", J. Membr. Sci., 472(0), 167-184. https://doi.org/10.1016/j.memsci.2014.08.016
  57. Li, L.H., Deng, J.C., Deng, H.R., Liu, Z.L. and Xin, L. (2010), "Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes", Carbohydr. Res., 345(8), 994-998. https://doi.org/10.1016/j.carres.2010.03.019
  58. Li, M.S., Wang, M.X., Wu, F.Y. and Chu, X.Z. (2016), "Construction of antibacterial layer on polyvinylchloride three-channel hollow fiber membranes", J. Ind. Eng. Chem., 39, 181-187. https://doi.org/10.1016/j.jiec.2016.05.025
  59. Li, M.S., Zhao, Z.P., Wang, M.X. and Zhang, Y. (2015), "Controllable modification of polymer membranes by LDDLT plasma flow: Antibacterial layer onto PE hollow fiber membrane module", Chem. Eng. J., 265, 16-26. https://doi.org/10.1016/j.cej.2014.12.044
  60. Liu, C., de Faria, A.F., Ma, J. and Elimelech, M. (2017), "Mitigation of biofilm development on thin-film composite membranes functionalized with zwitterionic polymers and silver nanoparticles", Environ. Sci. Technol., 51(1), 182-191. https://doi.org/10.1021/acs.est.6b03795
  61. Liu, T.M., Wu, X.Z. and Qiu, Y.R. (2016), "Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan", J. Biomater Sci Polym Ed., 1-21.
  62. Luo, Z., Wu, Q. and Zhang, M. (2012), "The synergistic antibacterial effects of water soluble N-succinylchitosan with ceftriaxone against Escherichia coli", Lett. Drug Des. Discov., 9(9), 848-852. https://doi.org/10.2174/157018012803307905
  63. Ma, W., Soroush, A., Van Anh Luong, T., Brennan, G., Rahaman, M.S., Asadishad, B. and Tufenkji, N. (2016), "Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation", Water Res., 99, 188-199. https://doi.org/10.1016/j.watres.2016.04.042
  64. Madaeni, S., Zinadini, S. and Vatanpour, V. (2011), "A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized $TiO_2$ nanoparticles", J. Membr. Sci., 380(1), 155-162. https://doi.org/10.1016/j.memsci.2011.07.006
  65. Maddah, H. and Chogle, A. (2016), "Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation", Appl. Water Sci., 1-15.
  66. McCarrell, E.M., Gould, S.W., Fielder, M.D., Kelly, A.F., El Sankary, W. and Naughton, D.P. (2008), "Antimicrobial activities of pomegranate rind extracts: enhancement by addition of metal salts and vitamin C", BMC Complement Altern. Med., 8(1), 64. https://doi.org/10.1186/1472-6882-8-64
  67. Mi, L. and Jiang, S. (2014), "Integrated antimicrobial and nonfouling zwitterionic polymers", Angew. Chem. Int. Ed., 53(7), 1746-1754. https://doi.org/10.1002/anie.201304060
  68. Mollahosseini, A. and Rahimpour, A. (2013), "A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties", Biofouling, 29(5), 537-548. https://doi.org/10.1080/08927014.2013.777953
  69. Mollahosseini, A. and Rahimpour, A. (2014), "Interfacially polymerized thin film nanofiltration membranes on $TiO_2$ coated polysulfone substrate", J. Ind. Eng. Chem., 20(4), 1261-1268. https://doi.org/10.1016/j.jiec.2013.07.002
  70. Munoz-Bonilla, A. and Fernandez-Garcia, M. (2012), "Polymeric materials with antimicrobial activity", Prog. Polym. Sci., 37(2), 281-339. https://doi.org/10.1016/j.progpolymsci.2011.08.005
  71. Mural, P.K.S., Banerjee, A., Rana, M.S., Shukla, A., Padmanabhan, B., Bhadra, S., Madras, G. and Bose, S. (2014), "Polyolefin based antibacterial membranes derived from PE/PEO blends compatibilized with amine terminated graphene oxide and maleated PE", J. Mater. Chem. A, 2(41), 17635-17648. https://doi.org/10.1039/C4TA03997A
  72. Mural, P.K.S., Jain, S., Madras, G. and Bose, S. (2017), "Antibacterial membranes for water remediation with controlled leaching of biocidal silver aided by prior grafting of poly (ethylene imine) on to Ozone-Treated polyethylene", Chem. Select, 2(2), 624-631.
  73. Nair, R., Wu, H., Jayaram, P., Grigorieva, I. and Geim, A. (2012), "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335(6067), 442-444. https://doi.org/10.1126/science.1211694
  74. Nikkola, J., Liu, X., Li, Y., Raulio, M., Alakomi, H.L., Wei, J. and Tang, C.Y. (2013), "Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance", J. Membr. Sci., 444(0), 192-200. https://doi.org/10.1016/j.memsci.2013.05.032
  75. Onaizi, S.A. and Leong, S.S.J. (2011), "Tethering antimicrobial peptides: Current status and potential challenges", Biotechnol. Adv., 29(1), 67-74. https://doi.org/10.1016/j.biotechadv.2010.08.012
  76. Ozay, O., Akcali, A., Otkun, M.T., Silan, C., Aktas, N. and Sahiner, N. (2010), "P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials", Colloid. Surf. B Biointerf., 79(2), 460-466. https://doi.org/10.1016/j.colsurfb.2010.05.013
  77. Ozay, Y., Dizge, N., Gulsen, H.E., Akarsu, C., Harputlu, E., Ozer, E., Unyayar, A. and Ocakoglu, K. (2016), "Investigation of electroactive and antibacterial properties of polyethersulfone membranes blended with copper nanoparticles", CLEAN-Soil, Air, Water, 44(8), 930-937. https://doi.org/10.1002/clen.201500953
  78. Pan, Y., Yu, Z., Shi, H., Chen, Q., Zeng, G., Di, H., Ren, X. and He, Y. (2016), "A novel antifouling and antibacterial surface-functionalized PVDF ultrafiltration membrane via binding Ag/$SiO_2$ nanocomposites", J. Chem. Technol. Biotechnol., 92(3), 562-572. https://doi.org/10.1002/jctb.5034
  79. Park, S.H., Ko, Y.S., Park, S.J., Lee, J.S., Cho, J., Baek, K.Y., Kim, I.T., Woo, K. and Lee, J.H. (2016), "Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties", J. Membr. Sci., 499, 80-91. https://doi.org/10.1016/j.memsci.2015.09.060
  80. Pillai, C., Paul, W. and Sharma, C.P. (2009), "Chitin and chitosan polymers: Chemistry, solubility and fiber formation", Prog. Polym. Sci., 34(7), 641-678. https://doi.org/10.1016/j.progpolymsci.2009.04.001
  81. Pramanik, B.K., Kajol, A., Suja, F. and Md Zain, S. (2016), "Effect of biological and coagulation pretreatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water", Environ. Technol., 38(5), 579-587.
  82. Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H. and Gao, C. (2009), "Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes", J. Membr. Sci., 342(1), 165-172. https://doi.org/10.1016/j.memsci.2009.06.041
  83. Rahaman, M.S., Therien-Aubin, H., Ben-Sasson, M., Ober, C.K., Nielsen, M. and Elimelech, M. (2014), "Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes", J. Mater. Chem. B, 2(12), 1724-1732. https://doi.org/10.1039/c3tb21681k
  84. Rahimpour, A., Jahanshahi, M., Rajaeian, B. and Rahimnejad, M. (2011), "$TiO_2$ entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties", Desalination, 278(1-3), 343-353. https://doi.org/10.1016/j.desal.2011.05.049
  85. Razi, F., Sawada, I., Ohmukai, Y., Maruyama, T. and Matsuyama, H. (2012), "The improvement of antibiofouling efficiency of polyethersulfone membrane by functionalization with zwitterionic monomers", J. Membr. Sci., 401-402, 292-299. https://doi.org/10.1016/j.memsci.2012.02.020
  86. Regiel, A., Irusta, S., Kyziol, A., Arruebo, M. and Santamaria, J. (2013), "Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus", Nanotechnol., 24(1), 015101. https://doi.org/10.1088/0957-4484/24/1/015101
  87. Reiad, N.A., Salam, O.E.A., Abadir, E.F. and Harraz, F.A. (2012), "Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane", J. Environ. Sci. (China), 24(8), 1425-1432. https://doi.org/10.1016/S1001-0742(11)60954-6
  88. Ronen, A., Resnick, A., Lerman, S., Eisen, M.S. and Dosoretz, C.G. (2016), "Biofouling suppression of modified feed spacers: Localized and long-distance antibacterial activity", Desalination, 393, 159-165. https://doi.org/10.1016/j.desal.2015.07.004
  89. Saeki, D., Karkhanechi, H., Matsuura, H. and Matsuyama, H. (2016), "Effect of operating conditions on biofouling in reverse osmosis membrane processes: Bacterial adhesion, biofilm formation, and permeate flux decrease", Desalination, 378, 74-79. https://doi.org/10.1016/j.desal.2015.09.020
  90. Saeki, D., Nagao, S., Sawada, I., Ohmukai, Y., Maruyama, T. and Matsuyama, H. (2013), "Development of antibacterial polyamide reverse osmosis membrane modified with a covalently immobilized enzyme", J. Mem. Sci., 428, 403-409. https://doi.org/10.1016/j.memsci.2012.10.038
  91. Shen, X., Zhao, Y. and Chen, L. (2015), "Polycation-Grafted poly (vinylidene fluoride) membrane with biofouling resistance", Chem. Eng. Technol., 38(5), 859-866. https://doi.org/10.1002/ceat.201400582
  92. Shimazaki, Y., Mitsuishi, M., Ito, S. and Yamamoto, M. (1997), "Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction", Langmuir, 13(6), 1385-1387. https://doi.org/10.1021/la9609579
  93. Sile-Yuksel, M., Tas, B., Koseoglu-Imer, D.Y. and Koyuncu, I. (2014), "Effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism", Desalination, 347(0), 120-130. https://doi.org/10.1016/j.desal.2014.05.022
  94. Sondi, I. and Salopek-Sondi, B. (2004), "Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria", J. Colloid Interf. Sci., 275(1), 177-182. https://doi.org/10.1016/j.jcis.2004.02.012
  95. Sui, Y., Wang, Z. and Gao, C. (2014), "A new synthetical process of PVDF derivatives via atom transfer radical graft polymerizations and its application in fabrication of antifouling and antibacterial PVDF ultrafiltration membranes", Desalination Water Treat., 52, 6377-6388. https://doi.org/10.1080/19443994.2013.822185
  96. Tada, S., Inaba, C., Mizukami, K., Fujishita, S., Gemmei-Ide, M., Kitano, H., Mochizuki, A., Tanaka, M. and Matsunaga, T. (2009), "Anti-Biofouling properties of polymers with a carboxybetaine moiety", Macromol. Biosci., 9(1), 63-70. https://doi.org/10.1002/mabi.200800150
  97. Tamayo, L., Azocar, M., Kogan, M., Riveros, A. and Paez, M. (2016), "Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces", Mater. Sci. Eng.: C, 69, 1391-1409. https://doi.org/10.1016/j.msec.2016.08.041
  98. Tan, H., Ma, R., Lin, C., Liu, Z. and Tang, T. (2013), "Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics", Int. J. Mol. Sci., 14(1), 1854. https://doi.org/10.3390/ijms14011854
  99. Tang, L., Gu, W., Yi, P., Bitter, J.L., Hong, J.Y., Fairbrother, D.H. and Chen, K.L. (2013), "Bacterial antiadhesive properties of polysulfone membranes modified with polyelectrolyte multilayers", J. Membr. Sci., 446, 201-211. https://doi.org/10.1016/j.memsci.2013.06.031
  100. Taurozzi, J.S., Arul, H., Bosak, V.Z., Burban, A.F., Voice, T.C., Bruening, M.L. and Tarabara, V.V. (2008), "Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities", J. Membr. Sci., 325(1), 58-68. https://doi.org/10.1016/j.memsci.2008.07.010
  101. Tiraferri, A., Vecitis, C.D. and Elimelech, M. (2011), "Covalent binding of Single-Walled carbon nanotubes to polyamide membranes for antimicrobial surface properties", ACS Appl. Mater. Interf., 3(8), 2869-2877. https://doi.org/10.1021/am200536p
  102. Tischer, W. and Wedekind, F. (1999), Immobilized Enzymes: Methods and Applications, Biocatalysis-from discovery to application: Volume 200 of the series Topics in Current Chemistry, Springer Berlin Heidelberg
  103. Vatanpour, V., Madaeni, S.S., Khataee, A.R., Salehi, E., Zinadini, S. and Monfared, H.A. (2012), "$TiO_2$ embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance", Desalination, 292, 19-29. https://doi.org/10.1016/j.desal.2012.02.006
  104. Waheed, S., Ahmad, A., Khan, S.M., Gul, S.E., Jamil, T., Islam, A. and Hussain, T. (2014), "Synthesis, characterization, permeation and antibacterial properties of cellulose acetate/polyethylene glycol membranes modified with chitosan", Desalination, 351, 59-69. https://doi.org/10.1016/j.desal.2014.07.019
  105. Waheed, S., Ahmad, A., Khan, S.M., Gul, S.E., Jamil, T., Islam, A. and Hussain, T. (2014), "Synthesis, characterization, permeation and antibacterial properties of cellulose acetate/polyethylene glycol membranes modified with chitosan", Desalination, 351, 59-69. https://doi.org/10.1016/j.desal.2014.07.019
  106. Wang, M.-z., Wang, T., Yuan, K. and Du, J. (2016), "Preparation of water dispersible poly (methyl methacrylate)-based vesicles for facile persistent antibacterial applications", Chinese J. Polym. Sci., 34(1), 44-51. https://doi.org/10.1007/s10118-016-1725-4
  107. Wang, P., Hadjar, O., Gassman, P.L. and Laskin, J. (2008), "Reactive landing of peptide ions on selfassembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces", Phys. Chem. Chem. Phys., 10(11), 1512-1522. https://doi.org/10.1039/b717617a
  108. Wang, R., Neoh, K.G. and Kang, E.T. (2015), "Integration of antifouling and bactericidal moieties for optimizing the efficacy of antibacterial coatings", J. Colloid Interf. Sci., 438, 138-148. https://doi.org/10.1016/j.jcis.2014.09.070
  109. Weng, X.D., Ji, Y.L., Ma, R., Zhao, F.Y., An, Q.F. and Gao, C.J. (2016), "Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation", J. Membr. Sci., 510, 122-130. https://doi.org/10.1016/j.memsci.2016.02.070
  110. Wenten, I.G. and Khoiruddin (2016), "Recent developments in heterogeneous ion-exchange membrane: preparation, modification, characterization and performance evaluation", J. Eng. Sci. Technol., 11(7), 916-934.
  111. Wenten, I.G. (1995), "Mechanisms and control of fouling in crossflow microfiltration", Filtr. Separat., 32(3), 252-253. https://doi.org/10.1016/S0015-1882(97)84049-9
  112. Wenten, I.G. and Khoiruddin (2016), "Reverse osmosis applications: Prospect and challenges", Desalination, 391, 112-125. https://doi.org/10.1016/j.desal.2015.12.011
  113. Wenten, I.G., Khoiruddin, Arfianto, F. and Zudiharto (2013), "Bench scale electrodeionization for high pressure boiler feed water", Desalination, 314, 109-114. https://doi.org/10.1016/j.desal.2013.01.008
  114. Wenten, I.G. and Widiasa, I.N. (2002), "Enzymatic hollow fiber membrane bioreactor for penicilin hydrolysis", Desalination, 149(1-3), 279-285. https://doi.org/10.1016/S0011-9164(02)00789-0
  115. Wu, B., Wang, R. and Fane, A.G. (2016), "The roles of bacteriophages in membrane-based water and wastewater treatment processes: A review", Water Res., 110, 120-132.
  116. Xu, N. and Ding, D. (2015), "Preparation and antibacterial activity of chitosan derivative membrane complexation with iodine", RSC Adv., 5(97), 79820-79828. https://doi.org/10.1039/C5RA13227D
  117. Xue, Y., Xiao, H. and Zhang, Y. (2015), "Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts", Int. J. Mol. Sci., 16(2), 3626-3655. https://doi.org/10.3390/ijms16023626
  118. Yang, H.C., Hou, J., Chen, V. and Xu, Z.K. (2016), "Surface and interface engineering for organic-inorganic composite membranes", J. Mater. Chem. A, 4, 9716-9729. https://doi.org/10.1039/C6TA02844F
  119. Yang, Y.F., Li, Y., Li, Q.L., Wan, L.S. and Xu, Z.K. (2010), "Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling", J. Membr. Sci., 362(1), 255-264. https://doi.org/10.1016/j.memsci.2010.06.048
  120. Yang, Y.F., Hu, H.Q., Li, Y., Wan, L.S. and Xu, Z.K. (2011), "Membrane surface with antibacterial property y grafting polycation", J. Membr. Sci., 376(1-2), 132-141. https://doi.org/10.1016/j.memsci.2011.04.012
  121. Yao, F., Fu, G.D., Zhao, J., Kang, E.T. and Neoh, K.G. (2008), "Antibacterial effect of surfacefunctionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization", J. Membr. Sci., 319(1-2), 149-157. https://doi.org/10.1016/j.memsci.2008.03.049
  122. Younas, H., Fei, Y., Shao, J. and He, Y. (2016), "Developing an antibacterial super-hydrophilic barrier between bacteria and membranes to mitigate the severe impacts of biofouling", Biofoul., 32(9), 1089-1102. https://doi.org/10.1080/08927014.2016.1229775
  123. Youssef, A.M., Kamel, S. and El-Samahy, M.A. (2013), "Morphological and antibacterial properties of modified paper by PS nanocomposites for packaging applications", Carbohydr. Polym., 98(1), 1166-1172. https://doi.org/10.1016/j.carbpol.2013.06.059
  124. Zhang, X., Wang, L. and Levanen, E. (2013), "Superhydrophobic surfaces for the reduction of bacterial adhesion", RSC Adv., 3(30), 12003-12020. https://doi.org/10.1039/c3ra40497h
  125. Zhang, X., Wang, Z., Chen, M., Liu, M. and Wu, Z. (2016), "Polyvinylidene fluoride membrane blended with quaternary ammonium compound for enhancing anti-biofouling properties: Effects of dosage", J. Membr. Sci., 520, 66-75. https://doi.org/10.1016/j.memsci.2016.07.048
  126. Zhang, Z.B., Wu, J.J., Su, Y., Zhou, J., Gao, Y., Yu, H.Y. and Gu, J.S. (2015), "Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance", Appl. Surf. Sci., 332, 300-307. https://doi.org/10.1016/j.apsusc.2015.01.193
  127. Zinadini, S., Rostami, S., Vatanpour, V. and Jalilian, E. (2017), "Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite", J. Membr. Sci., 529, 133-141. https://doi.org/10.1016/j.memsci.2017.01.047

피인용 문헌

  1. Fouling mechanism in ultrafiltration of vegetable oil vol.5, pp.3, 2018, https://doi.org/10.1088/2053-1591/aab69f
  2. Flory-Huggins Based Model to Determine Thermodynamic Property of Polymeric Membrane Solution vol.1090, pp.None, 2018, https://doi.org/10.1088/1742-6596/1090/1/012074
  3. Prospect and Challenges of Tight Ultrafiltration Membrane in Drinking Water Treatment vol.395, pp.None, 2017, https://doi.org/10.1088/1757-899x/395/1/012012
  4. The Influence of Operating Parameters on Membrane Performance in Used Lube Oil Processing vol.395, pp.None, 2018, https://doi.org/10.1088/1757-899x/395/1/012018
  5. Recent advances in waste lube oils processing technologies vol.37, pp.6, 2017, https://doi.org/10.1002/ep.13011
  6. Preparation of antibacterial and antifouling PSF/ZnO/eugenol membrane for peat water ultrafiltration vol.19, pp.8, 2017, https://doi.org/10.2166/ws.2019.103
  7. Self-Healing Hyper-Cross-Linked Metal-Organic Polyhedra (HCMOPs) Membranes with Antimicrobial Activity and Highly Selective Separation Properties vol.141, pp.30, 2017, https://doi.org/10.1021/jacs.9b05155