• Title/Summary/Keyword: Coastal sediments

Search Result 444, Processing Time 0.031 seconds

Analysis of Hemolytic Microflora from the Ark Shell (Scapharca broughtonii) (패류(Scapharca broughtonii) 유래의 용혈활성 미생물 다양성 분석)

  • Kim, Dong-Gyun;Nam, Bo-Hye;Kong, Hee-Jeong;Kim, Woo-Jin;Kim, Bong-Seok;Jee, Young-Ju;Lee, Sang-Jun;Jung, Choon-Goo;Kong, Mi-Sun;Kim, Young-Ok
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.642-649
    • /
    • 2012
  • The southern coast of Korea is important for the ark shell ($Scapharca$ $broughtonii$) aquaculture, but the productivity was rapidly reduced during the previous decade by mass mortality. To overcome this economic loss, investigations only focused on environmental factors, and microbiological researches were performed insufficiently. In this study, two sites (Gangjin and Jinhae bay) were selected for their high and low rate of mortality, respectively, and the existence of microflora from underwater sediments in the bodies of $S.$ $broughtonii$ was analyzed. We screened the whole body of each sample and chose unique colonies, which exhibit alpha- and beta-hemolytic activity, for identification. The microflora in $S.$ $broughtonii$ was less variable than sediments, and restricted species were isolated. We identified 17 genera of 88 species and 16 genera of 64 species from the two bays, respectively. A major proportion was comprised of $Bacillus$ species, with the $Bacillus$ $cereus$ group being the most common species among the $Bacillus$ strains, while $Paenibacillus$, $Lynsilbacillus$, and $Vibrio$ species were the second most abundant species. At the genus level, there were no significant microbial differences between the two coastal regions. 64 species were isolated from rare site (Jinhae bay), but more species (88) with greater variety were isolated from the frequent site (Gangjin bay). Therefore, it was assumed that the cause of mass mortality lay in the difference in specie-level diversity, and conducting investigations on the diagnosis of pathogenic species by challenging tests using isolated unique species.

Comparative Analysis of Bathymetry in the Dongdo and the Seodo, Dokdo using Multibeam Echosounder System (다중빔 음향 측심기를 이용한 독도 동도와 서도 남부 연안 해저지형 비교 분석)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • In this study, we analyze precise seabed geomorphology and conditions for comparing the nearshore areas of the Dongdo(East Island) and the Seodo(West Island) using detailed bathymetry data and seafloor backscattering images, in Dokdo, the East Sea. We have been obtained the detailed bathymetry data and the seafloor backscattering data. The survey range is about $250m{\times}250m$ including land of islets to the nearshore areas of the southern part of the Dongdo and the Seodo. As a result of bathymetry survey, the southern area of the Dongdo(~50 m) is deeper than the Seodo(~30 m) in the water depth. The survey areas are consist of extended bedrocks from land of the Dongdo and the Seodo. The underwater rock region of the Seodo is larger than the Dongdo. In spite of similar extended rocks features from islets, there are some distinctive seabed characteristics between the southern nearshore areas of the Dongdo and the Seodo. The Talus-shaped seafloor environment formed by gravel and underwater rocks originating from the land of the Dongdo is up to about 15 m depth. And the boundary line of between extended bedrocks and seabottom is unclear in the southern nearshore of the Dongdo. On the other hand, the southern coast of the Seodo is characterized by relatively large scale underwater rocks and evenly distributed sediments, which clearly distinguish the boundary of between extended bedrocks and seafloor. This is because the tuff layers exposed to the coastal cliffs of the Dongdo are weak against weathering and erosion. It is considered that there are more influences of the clastic sediments carried from the land of the Dongdo compared with the Seodo. Particularly, the land of the Dongdo has been undergoing construction activities. And also a highly unstable ground such as faults, joints and cracks appears in the Dongdo. In previous study, there are dissimilar features of the massive tuff breccia formations of the Dongdo and the Seodo. These conditions are thought to have influenced the different seabed characteristics in the southern nearshore areas of the Dongdo and the Seodo.

Wind-and Rain-induced Variations of Water Column Structures and Dispersal Pattern of Suspended Particulate Matter (SPM) in Marian Cove, the South Shetland Islands, West Antarctica during the Austral Summer 2000 (서남극 남 쉐틀랜드 군도 마리안 소만에서 바람 및 강수에 의한 여름철 수층 구조의 변화와 부유물질 분산)

  • 유규철;윤호일;오재경;강천윤;김예동;배성호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Time-series CTDT (Conductivity/Temperature/Depth/Transmissivity) were obtained at one point near tidewater glacier of Marian Cove (King George Islands, Antarctica) to present water column properties and SPM (suspended particulate matter) dispersal pattern in relation with tide, current, meteorological data, and SPM concentration. Four layers were divided from the water column characteristics measured in the interval of an hour for about 2 days: 1) cold, fresh, and turbid surface mixed layer between 0-20 m in water depth, 2) warm, saline, and relatively clean Maxwell Bay inflow between 20-40 m in water depth, 3) turbid/cold tongue of subglacial discharges compared with the ambient waters between 40-70 m in water depth, and 4) cold, saline, and clean bottom water beneath 70 m in water depth. Surface plume, turbid freshwater at coastal/cliff area in late summer (early February), had the characteristic temperature and SPM concentration according to morphology, glacial condition, and composition of sediments. The restrict dispersion only over the input source of meltwater discharges was due to calm wether condition. Due to strong wind-induced surface turbulence, fresh and turbid surface plume, englacial upwelling cold water, glacier-contact meltwater, and Maxwell Bay inflow was mixing at ice-proximal zone and the consequent mixed layer deepened at the surface. Large amount of precipitation, the major controlling factor for increasing short-term glacial discharges, was accompanied by the apparent development of subglacial discharge that resulted in the rapid drop of salinity below the mid depth. Although amount of subglacial discharge and englacial upwelling may be large, however, their low SPM concentration would have small influence on bottom deposition of terrigenous sediments.

Diversity Analysis for Archaeal amoA Gene in Marine Sediment of Svalbard, Arctic Circle (북극 Svalbard 지역 해양 퇴적물의 고세균 amoA 유전자의 다양성 분석)

  • Park, Soo-Je;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.164-168
    • /
    • 2014
  • The ecosystem of the Arctic region has been increasingly affected by global warming. Archaeal ammonia monooxygenase alpha subunit coding gene (amoA) which is a key enzyme for nitrification was used to investigate the effect of runoff water of ice melt on microbial community of nitrogen cycle. The archaeal amoA genes at coastal area of Svalbard, Arctic region were PCR-amplified and sequenced after clone library construction. Analysis of archaeal amoA gene clone libraries suggested that the station 188 which is in the vicinity to the area of runoff water harbor lower ammonia-oxidizing archaeal diversity than the station 176 and 184. The average amino acid sequence identity within all archaeal amoA gene clones was 94% (with 91% nucleotide sequence identity). While all the clones of the station 188 were affiliated with Nitrosoarchaeaum clade containing strains isolated from low-salinity and terrestrial environments, about 45% of total clones of the station 176 and 184 were related to marine Nitosopumilus clade. Interestingly, other typical archaeal amoA gene clones of thaumarchaeal I.1b clade frequently retrieved from terrestrial environments was identified at station 188. Microbial community of nitrogen cycle in marine sediment might be affected by input of sediments caused by runoff glacier melt waters.

Elemental Composition of Authigenic Siderites in the Early Holocene Coastal Sediments, Western Coast of Korea and Their Depositional Implication (한국 서해 초기현세 퇴적물중 자생 능철석의 원소 성분과 퇴적학적 의미)

  • Cho, J.W.;Lim, D.I.
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.697-706
    • /
    • 2002
  • Authigenic siderite grains, ranging 100 to 250-${\mu}$m in diameter, are abundant in an about 8,600-year-old sediment layer in Namyang Bay, west coast of Korea. The siderites exhibit the aggregated spherulitic morphology with well-developed rhombs on the grain surfaces. They consist mostly of FeCO$_3$ (average, 65%) and MnCO$_3$ (average, 22%) with low Mg/Ca ratio (less than 0.4) in their bulk composition. A series of compositional ternary discrimination diagrams, together with high Mn and low Mg contents, show that only meteoric porewater was involved in siderite precipitation, assuming that depositional environment of host sediment is an organic-rich freshwater system. Considering a series of results such as radiocarbon age, authigenic Mn-rich siderite and lithological features, siderite-hosting sediment (unit Tl) is interpreted as freshwater swamp or bog deposition, infilling the topographic depressions that locally existed before the formation of mid-to-late Holocene tidal deposits. Center-to-margin compositional variation within individual grain is very systematic; Mn and Ca decrease towards the margin of a siderite grain, while Fe and Mg increase. It suggests that the spherulitic siderites were precipitated in this sedimentary layer in a series during the early diagenesis of MnOx-FeOx reduction under steady-state.

Estimation of verticle fluxes of nitrogen compounds in tidal flats of the Keum river estuary (금강하구 갯벌내 질소화합물질의 연직적인 플럭스 평가)

  • Kim Do Hee;Yang Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The main purpose of this study were to estimate the benthic fluxes of dissolved inorganic nitrogen (DIN) from the sediment and denitrification rates in tidal flats of the Keum river estuary. Sediment specimens were collected by a core sampler from three stations along the Keum river estuary in April, August and December, 1999. The sediments were composed of 1.18 %, 29.34 % and 69.49 % of gravel and sand, sand and silt, respectively. The mean ignition loss of the sediment was found 6.7 % and its Oxidation Reduction Potential (ORP) was measured -12 mV. The total hydrogen sulfides was determined about 0.26 mg/gㆍdry. The estimated outflux of ammonium was found 11.2 m mole N/m²ㆍday from the sediment, whereas -1.09 m mole N/m²ㆍday of influx was obtained for nitrate and nitrite through the incubation experiment of sediment cores. Total DIN flux was 10.2 m mole N/m²ㆍday outflux from the sediment. From the incubation experiments executed with the flux studies, mean denitrification rate was found 30.6 m mole N₂/m²ㆍday measured by the direct assay of N₂ production technique. On the basis that DIN flux and denitrification rate in sediment of tidal flat of the Keum river estuary are may be effects to control the algal biomass in the coastal environment, it seems inevitable to pay more attention to investigate the flux of DIN and denitrification rate in tidal flat of the Keum river estuary.

  • PDF

A Charecteristics of Marine Environments in a Blood Cockle Farms of the Northwestern Yeoja Bay, Korea 2. Spatio-temporal Distribution of Water Quality and Phytoplankton Community (여자만 북서부 꼬막어장의 해양환경 특성. 2. 수질환경 및 식물플랑크톤 군집)

  • Yoon, Yang Ho;Lee, Hyun Ji
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.579-592
    • /
    • 2020
  • This study was designed to assess the water quality and phytoplankton community including chlorophyll a in blood cockle (Tegillarca granosa) farms in May, August and November of 2017 in the northwestern Yeoja Bay, Korea. As a result, the seasonal characteristics of water types by water temperature and salinity were clear. Nutrients were abundant in silicate throughout the season, but phosphate was scarce in spring and summer, and nitrogen sources were scarce in autumn. The species composition of phytoplankton community was a very simple distribution, and the standing crop was also very low. The annual dominant species is dominated by the diatoms, with Skeletonema costatum-ls, Nitzschia longissima in spring, Pleurrosigma normanii, Coscinodiscus gigas in summer, and N. longissima, Pseudonitschia pungens, Chaetoceros curvisetus, Eucampia zodiacus in autumn. In summer the results were different from other coastal waters of Korea. The principal component analysis(PCA) and correlation analysis showed that the characteristics of water quality and biological environments differed according to the season. Furthermore, it was determined by the supply of materials through fresh water on land, seawater congestion caused by the refueling of surface sediments with lower depth, and the balance of biological production and mineralization of organic matters in blood cockle farms.

Adsorption of nitrate from contaminated sea water with activated dredged sediment (오염해수로부터 질산염의 제거를 위한 전처리 퇴적물의 흡착특성)

  • Song Young-Chae;Woo Jung-Hui;Jung Eun-Hye;Go Sung-Jung;Kim Dong-Geun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.589-593
    • /
    • 2005
  • A laboratory study on the adsorption of nitrate in polluted coastal water using various materials including several types of dredged sediments(ST) and yellow c1ays(YC), which are activated by heat(HT), bioleaching for heavy metal removal(BL) and neutralization(NR) was performed. The equilibrium time of the adsorption for the sediment bioleached and treated by heat(BL-HT-ST) was only 17min which was faster than the sediment bioleached, neutralized and treated by heat(BL-NR-HT-S) (25min) or the sediment treated by the bioleaching process(BL -ST)(27min), but longer equilibrium times for yellow c1ay(YC) or heat treated yellow day(HT- YC) were required. The adsorption processes of nitrate in sea water for tested material could be described by Freundlich isotherm, but were significantly affected by surface characteristics of the materials. The adsorption capacities for raw sediment and heat treated sediment were 2.12 and 2.19mg NO3-N/g, respectively, which were higher than others, indicating that the sediment activated by heat could be used as a material for the improvement of nearshore water quality.

Analysis on the Area of Deltaic Barrier Island and Suspended Sediments Concentration in Nakdong River Using Satellite Images (위성영상을 활용한 낙동강 삼각주 연안사주의 면적 및 부유퇴적물 농도 변화 분석)

  • Eom, Jinah;Lee, Changwook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.201-211
    • /
    • 2017
  • The estuary in Nakdong River has changes by the construction of harbors, land reclamation and artificial waterway changes. These resultslead to changes of extinction and creation of deltaic barrier island. The deltaic barrier island changes in the Nakdong River estuary affect the function of the barrier islands and cause environmental changes. Therefore, it is important to monitor the changes in the area of the Nakdong estuary. In this study, long-term changes of the area and suspended sediment of deltaic barrier island in the Nakdong River estuary were analyzed using Landsat TM/ETM+ images. As a result, end point rate (EPR) values of shoreline in Jinwoodo and Sinjado are about 5m/yr and about 50 m/yr, respectively. The EPR values of north-south and east-west direction in Doyodeung are 20 m/yr and -20 ~ 10 m/yr. The suspended sediment concentration (SSC) has a maximum value of $25g/m^3$ in the vicinity of Jinwoodo and Sinjado, while it has a maximum concentration of $40g/m^3$ in the vicinity of Shinjido and Doyodeung. In other words, the area and the SSC change are small in Jinwoodo, and the area change and the SSC variation are large in Sinjado and Doyodeung. As a result of analysis of correlation between area change and SSC variation using all data, the Pearson coefficient value (r) is 0.36 and it is 0.32 in winter data. In other words, it is considered that the SSC variation affectsthe deltatic barrier island area change. However, verification using advanced altimetry data is necessary in the future. These studies can be used for coastal monitoring and environmental monitoring.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.