DOI QR코드

DOI QR Code

Diversity Analysis for Archaeal amoA Gene in Marine Sediment of Svalbard, Arctic Circle

북극 Svalbard 지역 해양 퇴적물의 고세균 amoA 유전자의 다양성 분석

  • Park, Soo-Je (Department of Biology and Research Institute for Basic Sciences, Jeju National University) ;
  • Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University)
  • 박수제 (제주대학교 생물학과 및 기초과학연구소) ;
  • 이성근 (충북대학교 미생물학과)
  • Received : 2014.04.17
  • Accepted : 2014.05.08
  • Published : 2014.06.30

Abstract

The ecosystem of the Arctic region has been increasingly affected by global warming. Archaeal ammonia monooxygenase alpha subunit coding gene (amoA) which is a key enzyme for nitrification was used to investigate the effect of runoff water of ice melt on microbial community of nitrogen cycle. The archaeal amoA genes at coastal area of Svalbard, Arctic region were PCR-amplified and sequenced after clone library construction. Analysis of archaeal amoA gene clone libraries suggested that the station 188 which is in the vicinity to the area of runoff water harbor lower ammonia-oxidizing archaeal diversity than the station 176 and 184. The average amino acid sequence identity within all archaeal amoA gene clones was 94% (with 91% nucleotide sequence identity). While all the clones of the station 188 were affiliated with Nitrosoarchaeaum clade containing strains isolated from low-salinity and terrestrial environments, about 45% of total clones of the station 176 and 184 were related to marine Nitosopumilus clade. Interestingly, other typical archaeal amoA gene clones of thaumarchaeal I.1b clade frequently retrieved from terrestrial environments was identified at station 188. Microbial community of nitrogen cycle in marine sediment might be affected by input of sediments caused by runoff glacier melt waters.

북극지역은 지구온난화로 인하여 생태계에 큰 영향을 받고 있다. 본 연구는 북극 Svalbard 지역에서 육지 빙하의 해빙(ice melt)의 영향을 받는 해양퇴적층에서 질산화 과정에 핵심역할을 하는 고세균의 질산화유전자(ammonia monooxygenase, AMO)의 공간적 분포의 변화를 조사하였다. 해빙으로 인한 퇴적물 퇴적속도와 고세균 AMO의 alpha subunit를 코딩하는 amoA 유전자와의 관계를 클론라이브러리 분석을 통하여 분석하였다. 육지와 근접하여 퇴적속도가 가장 빠른 정점(188)에서 고세균 amoA 유전자의 다양성이 육지에서 비교적 먼 지역의 정점(176과 184)에 비해 현저히 낮음을 알 수 있었다. 3 정점의 고세균 amoA 유전자 클론들의 평균 아미노산 서열의 상동성은 94%(염기서열 91%)로 나타났다. 176과 184 정점에서 분석된 고세균 amoA 유전자 클론들 중 약 45%가 Nitosopumilus clade와 근연관계에 있는 반면, 188 지역의 경우 낮은 염농도에서 발견되는 Nitrosoarchaeaum clade와 근연관계에 있는 클론들이 발견되었다. 토양 고세균유래 amoA 유전자는 육지에 근접하여 해빙에 의한 영향을 가장 많이 받는 188정점에서만 발견이 되었다. 본 연구를 통하여, 해빙으로 인하여 육지로부터 운반되는 퇴적물의 량이 증가함에 따라, 해양퇴적층의 질소순환관련 미생물 군집에 변화가 유발되는 것으로 추정되며, 고세균의 amoA 유전자가 해양퇴적층 질소순환생태계 변화의 지표로 이용될 수 있음을 알 수 있었다.

Keywords

References

  1. Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., and Longino, J.T. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3-21. https://doi.org/10.1093/jpe/rtr044
  2. Dierssen, H.M., Smith, R.C., and Vernet, M. 2002. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc. Natl. Acad. Sci. USA 99, 1790-1795. https://doi.org/10.1073/pnas.032206999
  3. Forwick, M., Vorren, T.O., Hald, M., Korsun, S., Roh, Y., Vogt, C., and Yoo, K.C. 2010. Spatial and temporal influence of glaciers and rivers on the sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen. Geological Society, London, Special Publications 344, 163-193.
  4. Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102, 14683-14688. https://doi.org/10.1073/pnas.0506625102
  5. French, E., Kozlowski, J.A., Mukherjee, M., Bullerjahn, G., and Bollmann, A. 2012. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl. Environ. Microbiol. 78, 5773-5780. https://doi.org/10.1128/AEM.00432-12
  6. Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S., and Griffiths, M. 2008. Increased runoff from melt from the Greenland ice sheet: a response to global warming. J. Climate 21, 331-341. https://doi.org/10.1175/2007JCLI1964.1
  7. Holte, B. and Gulliksen, B. 1998. Common macrofaunal dominant species in the sediments of some north Norwegian and Svalbard glacial fjords. Polar Biology 19, 375-382. https://doi.org/10.1007/s003000050262
  8. Jung, M.Y., Park, S.J., Min, D., Kim, J.S., Rijpstra, W.I., Sinninghe Damste, J.S., Kim, G.J., Madsen, E.L., and Rhee, S.K. 2011. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl. Environ. Microbiol. 77, 8635-8647. https://doi.org/10.1128/AEM.05787-11
  9. Kim, J.G., Jung, M.Y., Park, S.J., Rijpstra, W.I., Sinninghe Damste, J.S., Madsen, E.L., Min, D., Kim, J.S., Kim, G.J., and Rhee, S.K. 2012. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ. Microbiol. 14, 1528-1543. https://doi.org/10.1111/j.1462-2920.2012.02740.x
  10. Konneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. 2005. Isolation of an autotrophic ammoniaoxidizing marine archaeon. Nature 437, 543-546. https://doi.org/10.1038/nature03911
  11. Mosier, A.C., Allen, E.E., Kim, M., Ferriera, S., and Francis, C.A. 2012. Genome sequence of "Candidatus Nitrosoarchaeum limnia" BG20, a low-salinity ammonia-oxidizing archaeon from the San Francisco Bay estuary. J. Bacteriol. 194, 2119-2120. https://doi.org/10.1128/JB.00007-12
  12. Park, S.J., Park, B.J., Jung, M.Y., Kim, S.J., Chae, J.C., Roh, Y., Forwick, M., Yoon, H.I., and Rhee, S.K. 2011. Influence of deglaciation on microbial communities in marine sediments off the coast of Svalbard, Arctic Circle. Microb. Ecol. 62, 537-548. https://doi.org/10.1007/s00248-011-9860-5
  13. Park, S.J., Park, B.J., and Rhee, S.K. 2008. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12, 605-615. https://doi.org/10.1007/s00792-008-0165-7
  14. Park, B.J., Park, S.J., Yoon, D.N., Schouten, S., Sinninghe Damste, J.S., and Rhee, S.K. 2010. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl. Environ. Microbiol. 76, 7575-7587. https://doi.org/10.1128/AEM.01478-10
  15. Svendsen, H., Beszczynska-Moller, A., Hagen, J.O., Lefauconnier, B., Tverberg, V., Gerland, S., Orbok, J.B., Bischof, K., Papucci, C., Zajaczkowski, M., and et al. 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21, 133-166. https://doi.org/10.1111/j.1751-8369.2002.tb00072.x
  16. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013 MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  17. Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7, 1985-1995. https://doi.org/10.1111/j.1462-2920.2005.00906.x
  18. Walker, C.B., de la Torre, J.R., Klotz, M.G., Urakawa, H., Pinel, N., Arp, D.J., Brochier-Armanet, C., Chain, P.S., Chan, P.P., Gollabgir, A., and et al. 2010. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 107, 8818-8823. https://doi.org/10.1073/pnas.0913533107
  19. Wilfried, H., Martin, H., and Stephan, S. 1998. Into the second century of worldwide glacier monitoring: prospects and strategies. Paris: UNESCO.

Cited by

  1. High diversity of planktonic prokaryotes in Arctic Kongsfjorden seawaters in summer 2015 vol.44, pp.1, 2014, https://doi.org/10.1007/s00300-020-02791-3