• Title/Summary/Keyword: Coastal sediment

Search Result 677, Processing Time 0.025 seconds

Numerical Simulation of Nearshore Morphological Changes near Groins (突堤 周邊의 海岸地形 變化 豫測模型)

  • 김태림;김창식;박광순;심재설;오병철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.187-196
    • /
    • 1998
  • Morphological changes around the groin system in the beach are examined using a numerical model. The model consists of two parts : the hydrodynamic model which calculates the transformation of waves and currents, and the sediment transport model which determines sediment transport rates and bottom topographic changes. The numerical model is applied to single-groin and three-groin systems on a typical plane beach. The changes to the beach system due to waves and currents during 150-day simulation near the groins are calculated using sediment transport rate patterns in the domain. The sand by-passing rate patterns around groins are also evaluated.

  • PDF

On the Limitation of Turbidity Generation Unit

  • Jin, Jae-Youll;Park, Jin-Soon;Song, Won-Oh;Oh, Jae-Kyung
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.363-368
    • /
    • 2003
  • Quantification of sediment losses into the ambient waters associated with various works of coastal developments is highly required for predicting their possible detrimental impacts on the aquatic environments. Although there have been some studies especially related to dredging (e.g., Nakai, 1978; Kirby and Land, 1991; Collins, 1995; Pennekamp et al., 1996; Lorenz, 1999; Jin et al.,2003), none can be regarded as a general guidance up to date, which results from the facts that the amount of sediments released into the ambient waters is influenced by several site/case-specific conditions, and that the existing studies have been carried out using different methods. (omitted)

  • PDF

Distribution and properties of intertidal Surface Sediments of Kyeonggi Bay, West Coast of Korea (경기만 조간대 표층퇴적물의 분포와 특성)

  • LEE, CHANG-BOK;YOO, HONG-RHYONG;PARK, KYUNG-SOO
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.277-289
    • /
    • 1992
  • Kyeonggi Bay, a macrotidal coastal embayment in the Yellow Sea coast of central korea, is fringed by vastly developed tidal flats. About 400 surface sediment samples were collected from the intertidal and subtidal zones of Kyeonggi Bay for a study of the sediment distribution pattern and the surface sediment characteristics of this environment. The kyeonggi Bay surface sediment becomes progressively finer in the shoreward direction, from offshore sand to shoreward silty sand and sandy silt. This shoreward-fining trend is repeated again on the tidal flat and, as a consequence, a grain-size break occurs near the low-water line which separates the intertidal area from the subtidal one. The intertidal and subtidal sediments differ from each other in textural characteristics such as mean grain size and skewness and this can be interpreted to result from differences in hydraulic energy and morphology between the two environments. The mineral and chemical compositions of the Kyeonggi Bay sediments are largely controlled by the sediment grain size. Smectite was nearly absent in the clay mineral assemblage of Kyeonggi Bay sediment. The contents of Co, Cu and Ni were high in the Banweol tidal flat, which suggests a continuous process of accumulation of these metals. the intertidal environment appears to respond rapidly to artificial coastal modifications, the effects of which should be taken into consideration when planning a dam construction or coastal reclamation.

  • PDF

Coupling of GIS and time dependent 2-D Sediment Transport Modeling (GIS와 연동된 2차원 퇴적물이동 모델링)

  • Lim, Hak-Soo;Kim, Chang S.;Lee, Sue-Hyun;Yoo, Dong-Hoon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.208-211
    • /
    • 2002
  • The Kyunggi Bay (125-l28E, 36-38N) is a macro-tidal bay in the western central port of Korean Peninsula(Fig. 1). The Bay characterizes its feature as wide tidal flats, deep tidal channels and tidal sand ridges running in parallel to tidal flows. The macro-tidal range (up to approximately 8.6m) and consequent strong tidal currents erode the bottom sediment and selectively transport to the low-energy area forming tidal ridges or tidal flats. (omitted)

  • PDF

A Study on Silt Transport of Seabed Around Incheon Harbor (인천항 주변 silt 이동에 관한 연구)

  • Baek, Seung-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.133-142
    • /
    • 2010
  • We calculated using siltation model to know the influnce of the tidal current, the tidal level, the sediment transport of seabed around sea area due to the construction of the Song do New city. We calculated the tidal current and based on this we estimated scour, sedimentation using the advection-diffusion equation and accessed the sediment transport of seabed before and after the construction of the New city. Sedimentation was increased in the east coast of Young jong Do, and Scour was increased according to the direction from the front route of north harbor to Ho do. Tidal level was increased overall.

Comparison of Silt Protector Design Between Korea and Japan (한일간 오탁방지막 설계 비교)

  • 오영민;송원오
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.66-70
    • /
    • 2003
  • Harbor construction works such as dredging, reclamation, riprap dumping and so on generate suspended sediment to affect ocean environment negatively so silt protector is widely used to keep construction site from deteriorating at the moment. This study has a purpose to improve our design techniques by comparing the design procedures of the silt protector between Korea and Japan.

Applicability Study of Numerical Model for Sedimentation in Navigation Channel (항로매몰 예측을 위한 수치모형의 적용성 검토)

  • 김규한;배기성;백승화
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • A numerical model for predicting depositional processes of navigation channels caused by waves and currents is proposed. In the model, non-equilibrium concentrations of suspended sediment are numerically solved by using the split-operator approach. The calculated concentrations across a channel show good agreements with the measured concentrations in experiments. Based on the calculated concentrations, differences of upward and downward sediment fluxes are estimated to predict topographic changes. The Predicted topographic change across the channel coincides fairly well with the measured profile provided that the currents are relatively stronger than waves.

  • PDF

Historical Record of Alexandrium spp. (Dinophyceae) in Southern Coastal Area of Korea

  • Shin, Hyeon Ho
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.493-498
    • /
    • 2013
  • To investigate the historical record of Alexandrium spp. in southern coastal areas of Korea, two sediment cores were collected from Gamak Bay and Yeoja Bay. Germination experiments revealed that the ellipsoidal Alexandrium cysts isolated from Gamak Bay and Yeoja Bay are morphologically identical to a toxic dinoflagellate A. tamarense. The ellipsoidal Alexandrium cysts in Yeoja Bay appeared from 30 to 32 cm depth upwards (ca. 1980s), and their concentration increased around 10 to 12 cm depth (mid-1990s). Similarly, cyst concentration in Gamak Bay also increased from 40 to 44 cm depth (ca. 1990s). These results coincide with the reports of Paralytic Shellfish Poisoning caused by A. tamarense in 1980s and 1990s along the southeast coast of Korea.

Database of Navigational Environment Parameters (Water Depth, Sediment Type and Marine Managed Areas) to Support Ships in an Emergency

  • Kim, Tae-Ho;Yang, Chan-Su
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.302-309
    • /
    • 2019
  • This study introduces the navigational environment database(DB) compiling water depth, sediment type and marine managed areas (MMAs) in coastal waters of South Korea. The water depth and sediment data were constructed by combining their sparse points of electronic navigation chart and survey data with high spatial resolution using the inverse distance weighting and natural neighbor interpolation method included in ArcGIS. The MMAs were integrated based on all shapefiles provided by several government agencies using ArcGIS because the areas should be used in an emergency case of ship. To test the validity of the constructed DB, we conducted a test application for grounding and anchoring zones using a ship accident case. The result revealed each area of possible grounding candidates and anchorages is calculated and displayed properly, excluding obstacle places.

Identifying Suspended Particulate Matters in an Urban Coastal System: Significance and Application of Particle Size Analysis

  • Ahn, Jong-Ho
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.167-174
    • /
    • 2012
  • In situ particle size spectra are obtained from two sequent cruises in order to evaluate the physical consequences of suspended particulate matters caused by episodic storm runoff from the Santa Ana River watershed, an urbanized coastal watershed. Suspended particles from various sources including surface runoff, near-bed resuspension, and phytoplankton are identified in empirical orthogonal function (EOF) analysis and an entropy-based parameterization (Shannon entropy). The first EOF mode is associated with high turbidity and fine particles as indicated by the elevated beam attenuation near the Santa Ana River and Newport Bay outlets, and the second EOF mode explains the suspended sediment dispersal and particle coarsening at the near-surface plume. Chlorophyll particles are also distinguished by negative magnitudes of the first EOF mode, which is supported by the relationship between fluorescence and beam attenuation. The integrated observation between the first EOF mode and the Shannon entropy index accentuates the characteristics of two different structures and/or sources of sediment particles; the near-surface plumes are originated from runoff water outflow, while the near-bottom particles are resuspended due to increased wave heights or mobilizing bottom turbidity currents. In a coastal pollution context, these methods may offer useful means of characterizing particle-associated pollutants for purposes of source tracking and environmental interpretation.