• Title/Summary/Keyword: Coastal sediment

Search Result 677, Processing Time 0.032 seconds

Sediment Transport Calculation Considering Cohesive Effects and Its Application to Wave-Induced Topographic Change (점착력을 고려한 표사유동 수치모델의 제안과 파랑에 의한 지형변동의 적용성 검토)

  • Cho, Yong Hwan;Nakamura, Tomoaki;Mizutani, Norimi;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.405-411
    • /
    • 2013
  • A sediment transport calculation considering cohesive force is proposed to deal with the transport phenomena of cohesive sediment. In the proposed calculation, each sand particle is assumed to be surrounded by a thin layer of mud. The critical Shields parameter and bed-load sediment transport rate are modified to include the cohesive force acting on the sand particle. The proposed calculation is incorporated into a two-way coupled fluid-structure-sediment interaction model, and applied to wave-induced topographic change of artificial shallows. Numerical results show that an increase in the content ratio of the mud, cohesive resistance force per unit surface area and water content cause increases in the critical Shields parameter and decreases in the bed-load sediment transport rate, reducing the topographic change of the shallow without changing its trend. This suggests that mixing mud in the pores of the sand particles can reduce the topographic change of shallows.

A General Formula of Total Sediment Transport Rate for Waves and Currents (범용 파랑.흐름 공존시의 비점착성 퇴적물이동 예측식)

  • Kim, Hyo-Seob;Jang, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.462-469
    • /
    • 2009
  • This study suggests a general formula of non-cohesive sediment transport rates for waves and currents which is also valid for wave only or current only condition. On-offshore sediment transport rates with the second order Stokes wave in the shallow water are calculated as the pickup rate times the distance. The formula depicts reasonably that high waves move material offshore, and low waves move material onshore. Also the formula, as is the case the waves with long period tend to move material onshore, shows good results.

The Partitioning of Organic Carbon Cycle in Coastal Sediments of Kwangyang Bay

  • Han, Myung-Woo;Lee, In-Ho;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.103-111
    • /
    • 1997
  • Biogeochemical cycling of organic carbon is quantitatively partitioned in terms of 1) flux to the ocean bottom, 2) benthic utilization at or near the sediment-water interface, 3) remineralization and 4) burial within sediments, by making an independent determination for each component process from a single coastal site in Kwangyang Bay. The partitioning suggests that the benthic utilization at or near the sediment-water interface is the major mode of organic carbon cycling at the site. The benthic utilization takes 61.8% (441.6 gCm$^{-2}$ yr $^{-1}$) of the total near-bottem organic carbon flux, 714.6 gCm $^{-2}$yr$^{-1}$, and far exceeds the remineralization of organic carbon within the sediments which amounts only to 6% (41.24 gCm$^{-2}$yr$^{-1}$) of the total near-bottom flux. The residence time is about 1.6 years for the sedimentary metabolic organic carbon in the upper 45 cm. The dominant partitioning of the benthic utilization in the carbon budget suggests that most of labile organic carbons are consumed at or near the sediment-water interface and are left over to the sediment column by significantly diminished amounts.

  • PDF

An Experimental Study on Erosion and Deposition of Estuarial Cohesive Sediment (하구점성토의 침식 및 퇴적에 관한 실험적 연구)

  • 안수한;김재중
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 1989
  • Cohesive sedimentation mechanism is affected by various physico-chemical factors. Thus, the field observations and the laboratory experiments for cohesive sediment have been reported for decades. Erosion and deposition test was carried out with cohesive sediment material sampled in the Keum River Estuary in this study. The change of the suspended cohesive sediment concentration was measured for various flow conditions, which have the purpose to determine the critical shear stress and the coefficients for erosion and deposition . The critical shear stress and the coefficient for erosion were determined in the flume test. The equilibrium concentration was determined for each shear stress and the relationship between the normalized equilibrium cocentration with the initial cocentration (Ceq/co) and the equivalent shear stress was obtained. The experimental results were compared with the other results and showed fairly well agreements with them.

  • PDF

Comparisons of the Environmental Characteristics of Intertidal Beach and Mudflat

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.225-231
    • /
    • 2009
  • The characteristics of morphological shapes, wave heights, tidal ranges and sediment sizes are observed and compared between intertidal beach and mudflat. The Mohang sand beach, southwest coast of Korea, is located just next to the large mudflat and has tidal range over 5 meters. Wave measurements are conducted at each entrance of the beach and mudflat as well as at the outside waters representing the incident waves to these different coastal environments. The morphological characteristics are also examined including the sediment size and the slope of the bathymetry, For the observation of morphological shapes, camera monitoring technique is used to measure the spatial information of intertidal bathymetry. The water lines moving on the intertidal flat/beach durinq a flood indicate depth contours between low and high water lines. The water lines extracted from the consecutive images are rectified to get the ground coordinates of each depth contours and integrated to provide three dimensional information of intertidal topography. The wave data show that sand beach is in the condition of severer wave forcing but tidal range is almost identical in both environment. The slope of the mudflat is much milder than the sand beach with finer sediment.

Adsorption of Nitrate and Phosphate onto the Dredged Sediment from a Coastal Fishery (연안어장 준설퇴적물에 대한 질산염과 인산염의 흡착)

  • Sun, Young-Chul;Kim, Myoung-Jin;Song, Young-Chae
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.459-463
    • /
    • 2012
  • In the present study, experiments have been performed to investigate the effects of the type of adsorbent, pH, and ionic strength on the adsorption of nutrients (nitrate and phosphate in artificial solution) onto the dredged sediment from a coastal fishery. In addition, this study aims to evaluate the possibility of removing the nutrients from the water using the dredged sediment. In the adsorption experiments of the nutrients, the reactions were completed within 10 minutes using ${NO_3}^-$-N($100{\mu}M$, 10mM) and ${PO_4}^{3-}$-P($100{\mu}M$, 10mM). In the steady state, 61% and 77% of the initial amounts were removed respectively for $100{\mu}M$ ${NO_3}^-$-N and $100{\mu}M$ ${PO_4}^{3-}$-P. The thermal treatment of the dredged sediment at $900^{\circ}C$ was not helpful to increase the removal efficiencies of the nutrients. Additives such as CaO and MgO dropped the removal efficiency of ${NO_3}^-$ to 0%, but increased that of ${PO_4}^{3-}$ up to 98%. Adsorption isotherms of ${NO_3}^-$ and ${PO_4}^{3-}$ could be explained by the Freundlich equation ($R^2$>0.99). The adsorption reaction was little influenced by the pH and ionic strength. Based on the results showing short reaction time and considerably high removal efficiencies of the nutrients, it is proposed to apply the dredged sediment from a coastal fishery to removing nutrients such as nitrate and phosphate in the water.

The Coastal Geomorphology in General of Korea - Research Trends and Issues - (한국의 지형학 연구 - 해안지형 일반 -)

  • Kim, Sung Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2012
  • The purpose of this study is to review research trends and issues of coastal geomorphology in general of Korea, which is divided into two periods; the former and later periods of 1990s when The Korean Geomorphological Society was established. In this study, coastal geomorphology in general refers to the landforms except tidal flats and coastal terraces. The descriptive statistics of research papers published in 5 major geography journals since 1990s were computed and these papers were classified according to their main subjects. The methodology for coastal landform study was analyzed by sub-fields of landform change and sediment analysis. The study of coastal geomorphology in Korea started from around 1970s and has progressed significantly in terms of the scope and the number of papers published since 1990s. There is few paper published in 1990s on coastal geomorphology in general, but so many research has achieved and came to be the major part of coastal geomorphology study since 2000s. Further methodology is necessary for morphodynamics study in the future.