• Title/Summary/Keyword: Coastal Zone

Search Result 759, Processing Time 0.029 seconds

Origin of the Cold Water below $10^{\circ}C$ Occurring in the Southern Coastal Region of the Korean East Sea in Summer by Ra Isotope Distribution (Ra동위체로 본 하계 동해 남부 연안해역에 출현하는 $10^{\circ}C$ 이하 냉수괴의 기원)

  • YANG Han-Soeb;KIM Pyoung-Joong;LEE Jae-Chul;MOON Chang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.404-412
    • /
    • 1994
  • Radium isotopes were measured together with oceanographical parameters in the southern coastal region of the Korean East Sea during the period of September $2{\sim}8$, 1991. In September, there were various water masses vertically distributed in this region due to formation of strongly seasonal thermoclines. These water masses were characterized by activity of radium isotopes as well as water temperature and dissolved oxygen. Among the water masses, Japan Sea Proper Water(JSPW) below $1^{\circ}C$ had the highest Ra-226 activities but the lowest Ra-228 concentrations. However, Tsushima Surface Water (TSW) above $20^{\circ}C$ in water temperature had the highest Ra-228 which decreased sharply with depth. In TSW, Ra-228 activities were in the range of $194{\sim}270$ dpm/kl, which were approximately 10 times higher than JSPW. Activity ratios(A.R's) of Ra-228/Ra-226 were $1.9{\sim}2.6$ for TSW, $0.7{\sim}1.1$ for Tsushima Middle Water(TMW) of $12{\sim}17^{\circ}C\;to\;0.4{\sim}0.7$ for North Korea Cold Water(NKCW) with $1{\sim}7^{\circ}C$ and below 0.2 for JSPW. The Ra-228/Ra-226 ranged from 0.6 to 0.9 in the cold waters of $2{\sim}6^{\circ}C$, which were observed at depth of $65{\sim}120\;m$ in this study area. Radium isotopes provided a useful means of identifying origins of the cold water which occurred annually at intermediate or bottom layers in the southern coastal zone of the Korean East Sea. By plotting radium isotopes against water temperature, it could be observed clearly that the cold waters between $2{\sim}6^{\circ}C$ did not originate from the mixed water of JSPW and TMW but from NKCW.

  • PDF

Spatial Distribution of Pigment Concentration Around the East Korean Warm Current Region Derived from Satellite Data - Satellite Observation in May 1980 - (위성원격탐사에 의한 동한난류 주변 해역의 색소농도 공간적 분포 -1980년 5월 관측을 중심으로 -)

  • Kim Sang Woo;Saitoh Sei-ich;Kim Dong Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.265-272
    • /
    • 2002
  • Spatial distribution of Phytoplankton Pigment Concentration (PPC) and Sea Surface Temperature (SST) around the East Korean Warm Current (EKWC) was described, using both Coastal Zone Color Scanner (CZCS) images and Advanced Very High Resolution Radiometer (AVHRR) images in May, 1980. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw (normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC (>2.0 mg/m^3) area appeared in the CZCS and AVHRR images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters alonB western thermal front of the warm streamer of the EKWC. In this region, the highest PPC occurred by a combination of the high absorption of the phytoplankton (443 nm) and highest reflectance of suspended materials (550 nm). Another high PPC ($\simeq$$6\;mg/m^3$) appeared in the warm water overlay region inside warm streamer. High phytoplankton pigment concentration of this region was corresponding to the short wavelength of 443 nm, which represented phytoplankton absorption of the CZCS image.

Distribution Characteristic of Exploitable Macrobenthic Invertebrates of Beach Sediments in the Southern Coastal Water of Jeju Island (제주남부해역 사질대 유용생물 분포특성)

  • Ko, Jun-Cheol;Ko, Hyuck-Joon;Kim, Bo-Yeon;Cha, Hyung-Kee;Chang, Dae-Su
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.197-213
    • /
    • 2012
  • This study was performed to know the community structure of macrobenthos and environmental factors at each 16 stations in the subtidal sandy bottoms of the southern coastal water of Jeju Island from July to November, 2011. Mean temperature and mean salinity were $20.2-22.7^{\circ}C$, 33.7-34.9 psu which shows stable water messes. Chlorophyll a concentrations of phytoplankton ranged from 0.71 to 1.71 mg/L (1.11 mg/L), showing higher July than September and November with a blooming in summer. The mean concentration values (the ranges in parentheses) of nitrate, phosphate, and silicate are 0.029-0.206 mg/L (0.101 mg/L), 0.001-0.027 mg/L (0.007 mg/L), 0.024-0.682 mg/L (0.454 mg/L), respectively. However, the values higher coastal zone due to influxes from the land. A total of 37 species was identified. of these mollusca comprised 29 secies (78.4%); Echinodermata 5 (13.5%); Arthropoda 3 (8.1%). density and biomass were estimated to be 550 ind./$m^2$ and 20,951.8 gwwt/$m^2$, respectively. Mollusca were the most dominant faunal group in terms of abundance (481 ind./$m^2$) and number of species as well, whereas bivalves were predominant in biomass (16,647.6 gwwt/$m^2$). The dominant species were Vasticardium burchardi, Oblimopa japonica, Mactar achatina, Bornatemishistrioiw akawai, Paphia vernicosa, Amusium japonicum, Glycymeris albolineata, Astriclypeus manni in 15-30 m. The seasonal variation appeared as distinct, Mollusca of individual and biomass. When summer was make a slow increase, after the highest decrease in autumn. The abundance of macrobenthic invertebrates showed significant correlation with environmental factors (Chlorophyll a, DIN, $SiO_2$, Fine sand, Very fine sand) in almost all sampling depths. The biodiversity, evenness richness index were appeared 1.56-2.50 (H'), 0.49-0.80 (E'), 4.12-4.67 (R) in each stations. The dominace index were appeared Highest in November and lowest in September.

Actual Vegetation and Structure of Plant Community of Forest Ecosystem in Taejongdae, Busan City, Korea (부산광역시 태종대 산림생태계의 현존식생 및 식물군집구조)

  • Kim, Jong-Yup
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.426-436
    • /
    • 2012
  • This study was carried out to investigate actual vegetation, the structure of plant community, and ecological succession sere of coastal forest ecosystem in warm temperate climate zone, Taejongdae, Busan City, Korea to provide the basic data for planning of the forest management. As a result of analysis of actual vegetation, vegetation types divided into 35 types, and the area of survey site was $1,750,461m^2$. The ratio of vegetation type dominated by Pinus thunbergii was 80.7%, dominated by Quercus spp. was just 5.0%, and dominated by Carpinus tschonoskii was just 0.4%. Eighteen plots(size is $20m{\times}20m$) were set up and the results analyzed by DCA which is one of the ordination technique showed that the plant communities were divided into four groups which are community I(P. thunbergii community), community II(P. thunbergii-Quercus serrata community), community III(Q. serrata-P. thunbergii community), and community IV(Carpinus tschonoskii-P. thunbergii community). The age of community I was from 38 to 59 years old, that of community II was from 35 to 71 years old, that of community III was from 37 to 53 years old, that of community IV was from 50 to 72 years old, thus we supposed that the age of the study site is about from 38 to 72 years old. We supposed that the successional sere of the study site is in the early stage of ecological succession in the warm temperate climate zone. The dominant species will be changed from P. thunbergii to Q. serrata or Carpinus tschonoskii in the canopy layer, on the other hand, Eurya japonica will be dominant species in the understory layer, and E. japonica and Trachelospermum asiaticum var. intermediumwill be dominant species in the shrub layer for a while. According to the index of Shnnon's diversity(unit: $400m^2$), community I ranged from 0.8640 to 1.3986, community II was from 0.1731 to 1.1885, community III was from 0.8250 to 1.0042, and community IV was from 0.3436 to 0.6986.

Replacement of Saline Water through Injecting Fresh Water into a Confined Saline Aquifer at the Nakdong River Delta Area (염수로 충진된 낙동강 델타지역 피압대수층에서 담수주입에 의한 염수치환 연구)

  • Won, Kyung-Sik;Chung, Sang Yong;Lee, Chang-Sup;Jeong, Jae-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • We performed injection tests in a deep-seated confined aquifer to assess the potential of artificial recharge as a means of preventing saltwater contamination, thereby securing groundwater resources for the Nakdong Delta area of Busan City, Korea. The study area comprises a confined aquifer, in which a 10-21-m-thick clay layer overlies 31.5-36.5 m of sand and a 2.8-11-m-thick layer of gravel. EC logging of five monitoring wells yielded a value of 7-44 mS/cm, with the transition between saline and fresh water occurring at a depth of 15-38 m. Above 5 m depth, water temperature is 10-15.5℃, whereas between 5 and 50 m depth the temperature is 15.5-17℃. Approximately 950 m3 of fresh water was injected into the OW-5 injection well at a rate of 370 m3/day for 62 hours, after which the fresh water zone was detected by a CTD Diver installed at a depth of 40 m. The persistence of the fresh water zone was determined via EC and temperature logging at 24 hours after injection, and again 21 days after injection. We observed a second fresh water zone in the OW-2 well, where the first injection test was performed more than 20 days before the second injection test. The contact between fresh and saline water in the injection well is represented by a sharp boundary rather than a transitional boundary. We conclude that the injected fresh water occupied a specific space and served to maintain the original water quality throughout the observation period. Moreover, we suggest that artificial recharge via long-term injection could help secure a new alternative water resource in this saline coastal aquifer.

A Study on Integrated Visualization and Mapping Techniques using the Geophysical Results of the Coastal Area of the Dokdo in the East Sea (독도 연안 해저 지구물리 자료의 통합 중첩 주제도 작성 연구)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2016
  • The purpose of this study is to integrate and visualize using mapping techniques based on precise seabed geomorphology, seafloor backscattering images and high-resolution underwater images of the nearshore area around the Dokdo, in the East Sea. We have been obtained the precise topography map using multibeam echosounder system around the nearshore area(~50 m) of the southern part of the Seodo. Side scan sonar survey for analysis seafloor backscattering images was carried out in the same area of topography data. High-resolution underwater images(zone(a), zone(b), zone(c)) were taken in significant habitat scope of the nearshore area of the southern part of the Seodo. Using the results of bathymetry, seafloor backscattering images, high-resolution underwater images, we performed an integrated visualization about the nearshore area of the Dokdo. The integrated visualizing techniques are possible to make the seabed characteristic mapping results of the nearshore area of the Dokdo. The integrated visualization results present more complex and reliable information than separate geological products for seabed environmental mapping study and it is useful to understand the relation between seafloor characteristics and topographic environments of the study area. The integrated visualizing techniques and mapping analysis need to study sustainably and periodically, for effective monitoring of the nearshore ecosystem of the Dokdo.

Geological Structures and Evolution of the Tertiary Chŏngja Basin, Southeastern Margin of the Korean Peninsula (울산군 강동면 제 3기 정자분지(亭子盆地)의 지질구조와 분지발달)

  • Son, Moon;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.65-80
    • /
    • 1994
  • The Tertiary $Ch{\check{o}}ngja$ basin is located in the southeastern coastal area of the Korean Peninsula. It is a lozenge shaped fault-bounded basin with circa $5{\times}5km$ areal extent, isolated from other Tertiary basins by the Cretaceous Ulsan Formation in-between. The northwestern boundary of the basin is a domino/listric type normal fault trending $N30^{\circ}E$, whereas its southwestern boundary is a dextral strike-slip fault (trending $N20^{\circ}W$) with a lateral offset of more than 1 km. The basin is bounded by the East Sea on the eastern margin. Basin-fills consist of extrusive volcanic rock (Tangsa Andesites) of Early Miocene (16~22 Ma in radiometric age), unconsolidated fluviatile conglomerate (Kangdong Formation) and shallow brackish-water sandstone ($Sinhy{\check{o}}n$ Formation). The latter yields abundant Vicarya-Anadara molluscan fossils of early Middle Miocene age. The Tertiary strata become younger toward the northwestern boundary-fault of the basin, showing a zonal distribution pattern parallel to the fault: the younger sedimentary formations occupy a narrow zone of 2 km width along the northwestern boundary-fault, whereas the older Tangsa Andesites underlie them unconformably in the eastern and southeastern portions of the basin. The strata in the basin, including the Tangsa Andesites, are tilted (about $20^{\circ}$) toward the northwestern boundary-fault Sedimentary strata thicken toward the boundary-fault, forming a wedge shaped half-graben structure. A number of small-scale syndepositional normal growth faults and graben structures are observed in the sedimentary strata. These extensional structures have the same trend as the normal northwestern boundary-fault which we interpret as a pull-apart detachment fault. These characteristics imply persistent extension during the basin evolution, caused by a NW-SE directed tensional force. The $Ch{\check{o}}ngja$ basin is, thus, a kind of syndepositional tectonic basin evolved in a strike-slip (pull-apart) regime. The latter was caused by a dextral simple shear associated with the NNW-SSE opening of the East Sea. In view of the fact that the normal growth faults do not cut through the uppermost portion of the youngest $Sinhy{\check{o}}n$ Formation, it is inferred that the tensional force came to be inactive in the early Middle Miocene. This is coincident in timing with the termination of the East Sea opening (15 Ma).

  • PDF

Preliminary Nitrogen Removal Rates in Close-to-Nature Constructed Stream Water Treatment Wetland (하천수정화 근자연형 인공습지의 초기 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.269-273
    • /
    • 2002
  • A 0.19 hectare stream water purification demonstration wetland was constructed and planted with cattails from April 2001 to May 2001. Some portions of its bottom surfaces adjacent to levees have a variety of slope of 1:4 $\sim$ 1:15 and two small open water areas were installed in the wetland. These make its shape closer to a natural wetlant Nitrogen removal was a major objective of the wetlant Waters of Sinyang Stream flowing into Kohung Esturiane Lake located southern coastal region of Korean Peninsula were pumped and funneled into it. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Average inflow and outflow were 120 $m^3/d$ and 112 $m^3/d$, respectively. Hydraulic retention time was about 3.1 days. Average nitrate and total nitrogen removal rate for the early stage of the wetlands were 85.8 $mg/m^2/day$, 171.4 $mg/m^2/day$ respectively. Full establishment of cattails within a few years can develope litter-soil substrates and supply available carbon sources beneficial to the denitrification of nitrate. These can lead to increases of the nitrate retention rate. Short circuiting and dead zone areas which might be occurred due to the close-to-nature layout of the wetland were not observed during the monitoring period.

Depositional Sedimentary environments in the Han River Estuary and Around the Kyunggi Bay Posterior to the Han river's developments (한강종합개발 이후 한강하구 및 경기만의 퇴적환경)

  • 장현도;오재경
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.13-23
    • /
    • 1991
  • For the purpose of examining the depositional sedimentary environments in the Han River estuary and around the Kyunggi Bay posterior to the Han river's developments, a hydrological and sedimen-tological survey was carried out. According to the hydrological and sedimentological conditions, the studied area can be divided into 3 depositional sedimentary environments: Fluvial, Estuarine and coastal-Bay. Posterior to the Han river's developments, however, the alterations of hydrodynamic condition in the Han river have caused a substantial change of the sedimentary environments in the lower Han river and its estuary. That is, the contents of total suspended sediment anterior to the Developments decreased from 37mg/l (in the lower Han River) and 500-1750 mg/l (at the Kanghwa Bridge) to 18 mg/l and 208-1142 mg/l posterior to the developments. these changes seem to have caused the siltation near the sin-gok Underwater Dam. Thus the characters of the boundary condition between the fluvial and the estuarine environments have rapidly changed. It is considered that these changes result mainly from the construction of the two underwater dams for the maintenance of the water level of the Han river. As the estuary is a transition zone between land and sea, these changes in the Han River estuary might affect the sedimentary environments around the Kyunggi Bay. In order to verify the effects of these changes, it is necessary that a detailed survey be carried out around the Han River estuary including the Imjin and Yesong River estuaries.

  • PDF

Monitoring of the Estuary Sand Bar Related with Tidal Inlet in Namdaecheon Stream using Landsat Imagery (Landsat 위성 영상을 활용한 강원도 양양군 남대천 연안 하구사주 갯터짐 환경 모니터링)

  • Jang, Jiwon;Eom, Jinah;Cheong, Daekyo;Lee, Changwook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.481-493
    • /
    • 2017
  • Estuary sand bar of Namdaecheon Stream is located in Yangyang-gun, Gangwon-do in Korea. This unique place is situated between end of Namdaecheon Stream and East Sea. It is an important environment area of the global ecosystem from the transition zone of land and marine environments by forming a variety of coastal circumstance. Some endemic species should be protected which is appearing in the Namdaecheon Stream because of preservation for future generations. Especially, the salmon return to this stream as adults in order to breed which is more than 70 % of the salmon in Korea peninsular. The monitoring of estuary sand bar is need to analyze ecological environment and sustainable development with time. First of all we represents a different shape of estuary sand bar of Namdaecheon Stream from 1984 to 2015 using Landsat satellite imagery series. Particularly movement of the "tidal inlet" is most important factor to investigate the condition of the change for estuary sand bar. The location of tidal inlet is compared with precipitation, height of tide and oceanic current data according to time variation.