• Title/Summary/Keyword: Coastal SST

Search Result 153, Processing Time 0.029 seconds

Preliminary Study on Detection of Marine Heat Waves using Satellite-based Sea Surface Temperature Anomaly in 2017-2018 (인공위성 해수면온도 편차 이용 한반도 연안 해역 고수온 탐지 : 2017-2018년도)

  • Kim, Tae-Ho;Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.678-686
    • /
    • 2019
  • In this study, marine heat waves on coastal waters of Republic of Korea were detected using satellite-based Sea Surface Temperature Anomaly (SSTA). The detected results were compared with the warm water issues reported by the National Institute of Fisheries Science (NIFS). Marine heat waves detection algorithm using SSTA based on a threshold has proposed. The threshold value was defined as 2℃ for caution and 3℃ for warning issues, respectively. Daily averaged SST data from July to September of 2017-2018 were used to generate SSTA. The satellite-based detection results were classified into nine areas according to the place names used in the NIFS warm water issues. In the comparison of frequency of marine heat waves occurrence to each area with the warm water issue, most areas in the southern coast showed a similar pattern, that is probably NIFS uses spatially well distributed buoys. On the other hand, other sea areas had about two times more satellite detection results. This result seems to be because NIFS only considers the water temperature data measured at limited points. The results of this study are expected to contribute to the development of a satellite-based warm/cold water monitoring system in coastal waters.

Response of Water Temperature in Korean Waters Caused by the Passage of Typhoons (태풍 이동 경로에 따른 한반도 연근해 수온의 반응)

  • Kim, Sang-Woo;Lim, Jin-Wook;Lee, Yoon;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.508-520
    • /
    • 2016
  • In this study, variations in water temperature after the passage of typhoons in Korean waters from 2009-2015 were analyzed. Sea surface temperature (SST) images derived from satellite remote sensing data were used, and water temperature information came from real-time mooring buoys at Yangyang, Gangneung, Samcheok and Yeoungdeok, while wind data was supplied by the Korea Meteorological Administration. Differences in SST observed before and after the passage of a typhoon using the SST images were found to be affected by wind direction as well as hot and cool seasonal tendencies. Coastal water temperatures of the eastern part of the Korean peninsula, located to the right of a typhoon, as in the case of typhoons Muifa, Chanhom, Nakri and Tembin, were lowered by a coastal upwelling system from southerly winds across the water's surface at depths of 15m and 25m. In particular, typhoons Chanhom and Tembin decreased water temperatures by about $8-11^{\circ}C$ and $16^{\circ}C$, respectively. However, temperatures to the left of the typhoons were increased by a downwelling of offshore seawater with a high temperature through the mid and lower seawater layers. After the passage of the typhoons, further mixing of seawater at a higher or lower temperature due to southerly or northerly winds, according to the context, lasted for 1-2 or 4 days, respectively.

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시.공간 변화)

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.101-104
    • /
    • 2006
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that can explain ElNINO effect to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpola. Front (SPF) dividing into the north and south part of the East sea, the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF,SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong '-' value, where KF had strong '+' value. The time of '+' and '-' value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking '+' value which time was March and October That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험 직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시${\cdot}$공간 변화)

  • Yoon, Hong-Joo;Byun, Hye-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.397-402
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that tan explain EININO effort to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) dividing into the north and south part of the East sea , the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF, SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong'-'value, where KF had strong'+'value. The time of'+'and'-'value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking'+'value which time was March and October. That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.

Polychaete Feeding Guilds from the Continental Shelf Off the Southeastern Coast of Korea (한국(韓國) 동남해역(東南海域)에 분포(分布)하는 다모류(多毛類)의 식이조합(食餌組合))

  • Choi, Jin Woo;Koh, Chul Hwan
    • 한국해양학회지
    • /
    • v.24 no.2
    • /
    • pp.84-95
    • /
    • 1989
  • The feeding guild classification proposed by Fauchald and Jumars (1979) and the relationship between this guild structure and the habitat environment were examined based on the quantitative polycheate samples collected on the continental shelf off the southeastern coast of Korea. Total 12 feeding guilds were found and the major feeding guilds of polychaetes were BSX (burrowing, sessile, non-jawed), SDT (surface deposit feeding, discretely motile, tentaculate), SST (surface deposit feeding, sessile, tentaculate), BMX (burrowing, motile, non-jawed), BMJ (burrowing, motile, jawed), SDJ (surface deposit feeding, discretely motile, jawed). There were more significant associations between feeding guilds and mean grain size (${\phi}$); SST and BMJ showed a positive correlation with mean phi, whereas CDJ (carnivore, discretely motile, jawed) and FDT (filter feeding, discretely motile, tentaculate), a negative value. The CDJ and CMX (carnivore, motile, non-jawed) guilds showed positive correlations with sand content, but only SST guild showed a positive correlation with clay. The heterogeneity of sediment or sorting value (${\phi}$) was highly associated with various feeding strategies of polychaetes. Surface deposit feeders and filter feeders, sessile, and tentaculate strategies were associated with poorly sorted or heterogeneous sediments. Some preliminary polychaete feeding surfaces were posed. Southern and northern coastal region composed of muddy sediment were characterized by SDJ; northern slope of mud by SST; central coast of mud by SDT, BSX; and BMX; southern offshore of sandy sediment by SDJ and IDT (interface feeding, discretely motile, tentaculate).

  • PDF

Generation of Sea Surface Temperature Products Considering Cloud Effects Using NOAA/AVHRR Data in the TeraScan System: Case Study for May Data (TeraScan시스템에서 NOAA/AVHRR 해수면온도 산출시 구름 영향에 따른 신뢰도 부여 기법: 5월 자료 적용)

  • Yang, Sung-Soo;Yang, Chan-Su;Park, Kwang-Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.165-173
    • /
    • 2010
  • A cloud detection method is introduced to improve the reliability of NOAA/AVHRR Sea Surface Temperature (SST) data processed during the daytime and nighttime in the TeraScan System. In daytime, the channels 2 and 4 are used to detect a cloud using the three tests, which are spatial uniformity tests of brightness temperature (infrared channel 4) and channel 2 albedo, and reflectivity threshold test for visible channel 2. Meanwhile, the nighttime cloud detection tests are performed by using the channels 3 and 4, because the channel 2 data are not available in nighttime. This process include the dual channel brightness temperature difference (ch3 - ch4) and infrared channel brightness temperature threshold tests. For a comparison of daytime and nighttime SST images, two data used here are obtained at 0:28 (UTC) and 21:00 (UTC) on May 13, 2009. 6 parameters was tested to understand the factors that affect a cloud masking in and around Korean Peninsula. In daytime, the thresholds for ch2_max cover a range 3 through 8, and ch4_delta and ch2_delta are fixed on 5 and 2, respectively. In nighttime, the threshold range of ch3_minus_ch4 is from -1 to 0, and ch4_delta and min_ch4_temp have the fixed thresholds with 3.5 and 0, respectively. It is acceptable that the resulted images represent a reliability of SST according to the change of cloud masking area by each level. In the future, the accuracy of SST will be verified, and an assimilation method for SST data should be tested for a reliability improvement considering an atmospheric characteristic of research area around Korean Peninsula.

OUTBREAK OF HARMFUL ALGAL BLOOMS RELATED WITH TEMPERATURE DISTRIBUTION DERIVED FROM IN-SITU AND REMOTE SENSING EXPERIMENTS IN THE KOREAN WATERS

  • Han, In-Seong;Seong, Ki-Tack;Suh, Young-Sang
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.360-363
    • /
    • 2006
  • The red tide related with Cochlodinium Polykrikoides bloom has been frequently occurred around the South Sea of Korea and caused the economic loss in the coastal breeding grounds. The outbreak scale was usually change by physical, biological and environmental condition at each years. Relatively large-scale red tide occurred in 1995, 1997, 1999, 2001, 2002 and 2003 through spatial scale, duration and maximum density. Compared the scale of red tide with physical condition around the South Sea, the lower coastal temperature on August around the South Sea corresponded with the large scale red tide. By serial oceanographic investigations on August in the South Sea and estimated wide area temperature information by satellite, SSTA around the South Sea and wide area was negative when the outbreak of red tide was large scale. From the results of temperature difference between surface and 30m layers, the occurrence of enormous red tide has a tendency when the temperature gradient around the seasonal thermocline was weakened. Larger Kuroshio volume transport in the upstream was also corresponded with the large scale red tide.

  • PDF

A Study on Relationship between Cold Water Appearance and Fog Formation in the Southwest Coastal Waters of Korea (한국남서연안해역의 저수온 출현과 안개 형성과의 관련성에 관한 연구)

  • Yun Jong-Hwui;Jeong Hee-Dong;Cho Kyu-Dae;Lee Chung-Il
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.123-127
    • /
    • 2004
  • It is known that cold water appears and fog frequently forms in the southwest coastal waters of Korea in summer. The authors investigate the time and place. of cold water existence, and also whether the cold water affects the occurrence of fog formation. As a result, cold water begins to appear around Daeheugsando at the early summer. It gets colder with times and cold water area moves toward southwest of Jindo in mid-summer, then disappears in this area around mid-Oct. Fog mostly forms in April through August and most frequently occurs at Chukdo(Jindo) where sea surface temperature shows lower than that at the adjacent area. Accordingly it is taken that the cold water is considerably contributed to form the dense and frequent fog around Jindo area.

  • PDF

Variation of Tidal Front in the Southwestern Sea of Korea (한국 남서해역 조사전선의 변화)

  • 조양기;최병호;정홍화
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.170-175
    • /
    • 1995
  • To investigate the variation of tidal front in the southwestern sea of Korea, tidal currents were simulated. Tidal front proposed by a criterion parameter (log H/U$^3$)=1.5-2.0 was found further offshore by about 30-50 km in spring tide than in neap tide. This variation is comparable with the observed about 20-60km by satellite image of sea surface temperature (SST). Observed front by satellite is further offshore by about 10-30km than calculated region in southwestern region.

  • PDF