• Title/Summary/Keyword: Coarse Actuator

Search Result 49, Processing Time 0.03 seconds

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;곽이구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

Dynamic Analysis of Tip-actuators for Controlling Tip-media Gap in Cantilever Type Optical Data Storage (캔틸레버형 광 정보저장에서의 빠른 팁/매체 간극제어를 위한 팁/구동기의 동역학적 분석)

  • 이성규;송기봉;김준호;김은경;박강호;남효진;이선영;김영식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1004-1008
    • /
    • 2003
  • Near-filed optical storage using cantilever aperture tip is a promising way fer next generation optical data storage. To enhance the speed of reading and writing data, gap between tip and media should be controlled fast and precisely within near field region. In this paper, several PZT actuators are analyzed far constructing dual servo control algorithm: coarse actuators(stact. PZT, bimorph PZI) for media surface inclination and One actuator(film PZT) for media surface roughness. Dynamic analysis of stack PZT, bimorph PZT, and film PZT are performed through the frequency response. Based on the frequency response and mathematical model, fast analog controller is designed.

  • PDF

Dual servo control for aperture type near field storage head (개구형 근접장 헤드장치의 간극제어를 위한 이중 서보 제어)

  • Lee, Sung-Q.;Kim, Eun-Kyung;Park, Kang-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.875-878
    • /
    • 2005
  • This paper presents active control of aperture type near-field storage head. In order to achieve fast and accurate control, dual servo control algorithm is applied. Based on the big difference in time constant, we seperate two actuator and control independently. With the combination of fine and coarse actuator, gap is controlled within 100nm until the disk rotates upto 10 rpm speed. From the experimental results, the feasibility and performance of active gap control is proved.

  • PDF

Physical modelling of soil liquefaction in a novel micro shaking table

  • Molina-Gomez, Fausto;Caicedo, Bernardo;Viana da Fonseca, Antonio
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.229-240
    • /
    • 2019
  • The physical models are useful to understand the soil behaviour. Hence, these tools allow validating analytical theories and numerical data. This paper addresses the design, construction and implementation of a physical model able to simulate the soil liquefaction under different cyclic actions. The model was instrumented with a piezoelectric actuator and a set of transducers to measure the porewater pressures, displacements and accelerations of the system. The soil liquefaction was assessed in three different grain size particles of a natural sand by applying a sinusoidal signal, which incorporated three amplitudes and the fundamental frequencies of three different earthquakes occurred in Colombia. In addition, such frequencies were scaled in a micro shaking table device for 1, 50 and 80 g. Tests allowed identifying the liquefaction susceptibility at various frequency and displacement amplitude combinations. Experimental evidence validated that the liquefaction susceptibility is higher in the fine-grained sands than coarse-grained sands, and showed that the acceleration of the actuator controls the phenomena trigging in the model instead of the displacement amplitude.

A Novel Picometer Positioning System for Machine Tools and Measuring Machines

  • Mizumoto, Hiroshi;Yabuta, Yoshito;Arii, Shiroh;Tazoe, Yoichi;Kami, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.123-128
    • /
    • 2005
  • A novel tri-mode ultraprecision positioning system for machine tools and measuring machine is proposed. The basic coarse mode uses a Twist-roller Friction Drive (abbr. TFD), and controls several tens of millimeters of the machine-table travel with nanometer order of positioning resolution. The fine mode also utilizes the TFD with a fine adjusting mechanism. The resolution of the fine mode is in the range of sub-nanometer. For realizing picometer positioning, the ultra-fine mode is executed by using an active aerostatic guideway. On the bearing surface of this active guideway, several Active Inherent Restrictors (abbr. AIRs) are embedded for controlling the table position. An AIR unit consists of a piezoelectric actuator having a through hole, one end of the hole on the bearing surface acts as an inherent restrictor. Owing to the aerostatic mechanism of the AIR, the deformation of the piezoelectric actuator in the AIR unit causes much reduced table displacement. Such motion reduction is effective for ultraprecision positioning. Current positioning resolution of the ultra-fine mode is 50pm, however the final goal of the positioning resolution is expected to be in the order of picometer.

  • PDF

Design and Evaluation of An Electromagnetic Driven Actuator for Near-field Optical Recording System (근접장 광기록 시스템용 전자기구동 액추에이터의 설계 및 평가)

  • 김석중;이용훈;이철우;서중언
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2732-2741
    • /
    • 2000
  • Combination of magnetic recording technology and optical recording technology such as Near Field Optical Recording is watched recently. In order to accomplish this technology, the development of an electromagnetic driven mm-sized mirror shifting laser beam in track direction have to needed. In Near Field Optical Recording System, shifting laser beam in track direction mean as fine tracking and means as coarse tracking. Therefore in Near Field Optical Recording, 2-stage actuator is composed of servo controller in reading or recording information on disc layer. In our research, through design and simulation process of driven mm-sized mirror, we arrange systematically design process of driven mm-sized mirror having good frequency transfer characteristics. Design and simulation processes included modal analysis of spring, calculation of magnetic moment according to the number of turns and geometric configuration of coil and magnetic circuit analysis meaning that calculation of magnetic flux density in air gap of magnetic circuit. After that we design and make parts of driven mm-sized mirror, assemble and evaluate our electriomagnetic driven mm-sized mirror. we compared design values with actual characteristic values and present solution scheme. Through these processes we performed manufacturing of an electromagnetic driven mm-sized mirror having good frequency-domain characteristics and high sensitivity characteristics.

Two Axis Attitude Control System Design of Momentum Biased Satellite (모멘텀 바이어스 인공위성의 2축 자세제어 시스템 설계)

  • Lee, Seung-U;Seo, Hyeon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.40-46
    • /
    • 2006
  • It is required to develop a highly reliable attitude & orbit control system of satellite that is less expensive as the technology of satellite design & integration is recently matured dramatically. To accomodate this kind of needs, the two axis attitude control method for wheel-based momentum-biased satellite system whose momentum bias vector points to a certain direction(sun direction), is developed using simple but reliable sensors and actuator: three axis magnetometer and coarse sun sensor are used as sensors, and magnetic torque bars are used as actuator. Classical PD type controller design methodologies are applied on a satellite system for the two axis control with the proper assumptions. Nonlinear simulation results are included to demonstrate the long term stability and the performance of closed-loop system design results.

High Speed and High Precision Control of Linear Voice Coil Motor for Optical Disc (광 저장장치용 리니어 보이스 코일 모터의 고속, 고정밀 위치제어)

  • Kim, Se-Woong;Jun, Hong-Gul;Park, No-Chul;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.754-758
    • /
    • 2000
  • In recent years, the LDM(Linear DC Motor) is widely used, because it has more merits than other rotary motors. First, if system requires linear motion, LDM realizes direct linear motion as rotary motor does not. Second, system is simple and easy to control, and so on. In optical disc drive, a tracking system consists of two parts. One is fine actuating and the other is coarse actuating. For coarse actuating VCM(Voice Coil Motor) actuator is used as a basic drive mechanism. In this paper, MC(Moving Coil) type LDM is designed, manufactured and controlled. System is composed of mechanical-electromagnetic component, therefore mechanical loss and electromagnetic loss exist. The dominent mechanical loss is friction which results from sliding between guide shaft and hole. Therefore, this paper shows the friction compensation control. High speed and accurate position is not gained only PID control, therefore other control method is applied to the system.

  • PDF

Thruster Loop Controller design of Sun Mode and Maneuver Mode for KOMPSAT-2 (ICCAS 2004)

  • Choi, Hong-Taek;Oh, Shi-Hwan;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1392-1395
    • /
    • 2004
  • In order to successfully develop attitude and orbit control subsystem(AOCS), AOCS engineer performs hardware selection, controller design and analysis, control logic and interface verification on electrical test bed, integrated system test, polarity test, and finally verification on orbit after launching. Attitude and orbit control subsystem for KOMPSAT-2 consists of standby mode, sun mode, maneuver mode, science mode, and power safe mode to stabilize and to control the spacecraft for performing the mission. The sun mode is usually divided into sun point submode, earth search submode and safe hold submode. The maneuver mode is divided into attitude hold submode and ${\triangle}$ V submode, while the science mode divided into science coarse submode and science fine submode. Moreover, it is added to back-up mode which uses wheels as an actuator for sun mode and maneuver mode. In this paper, we describe the controller design process and the performance of the design results with respect to the sun mode and the maneuver mode based on thrusters as an actuator using on flexible model.

  • PDF