• Title/Summary/Keyword: Coal-to-Liquid Plant

Search Result 24, Processing Time 0.026 seconds

The Status and Prospect of CTL (Coal-to-Liquid) (CTL(Coal-to-Liquid) 기술 현황)

  • Jung, Heon;Yang, Jung-Il;Kim, Hak-Joo;Chun, Dong-Hyun
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.64-72
    • /
    • 2007
  • During the 2nd World War, several Coal-to-Liquid (CTL) plants were operated in Germany and England to convert coal to large volumes of liquid fuel. Big oil fields discovered in the Middle East after the war supplied crude oil at the low price and all CTL plants were forced to shut down. However, South Africa (Sasol) built a CTL plant in 1955 and 2 more plants afterward and the current production of coal-derived synfuel reached 150,000 bbl/day. Recently, the sustained high crude oil price and the fear of the "peak oil" rejuvenated the interest of CTL and several CTL projects are in progress. China established a plan to build CTL plants with the total capacity of 30 million tons of synfuel per year by 2030. China is building a direct coal liquefaction plant which is scheduled to produce 20,000bbl/day of synfuel in 2008. There are 8 CTL projects in USA either in the planning stage or in the ground-breaking stage. CTL projects are also carried out in Australia, Philippines, New Zealand, Indonesia and India. Korea needs to approach the CTL project in the perspective of the national energy security. In this paper, the history, the status, current activities and the prospect of CTL are described.

Suitability of Coal Fly Ash and Incineration Ashes as Raw Materials for Zeolite Synthesis

  • Murayama, NorihiHo;Yamakawa, Yousuke;Ogawa, Kazuo;Takami, Yuko;Yamamoto, Hideki;Shibata, Junji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.616-620
    • /
    • 2001
  • The objectives of this study are to investigate the suitability of various coal fly ashes and incineration ashes for zeolite synthesis. Zeolite P and hydroxysodalite are produced from coal fly ash and paper sludge incineration ash. When soluble and acid-soluble materials in incineration fly ash are removed by the water washing or acid washing before hydrothermal synthesis, hydroxysodalite can be produced. The factors to make solid-liquid separation difficult are the calcium component and the unburned carbon in ash.

  • PDF

CFD Modeling for 300MW Shell-Type One-Stage Entrained Flow Coal Gasifier : Effect of $O_2$/Steam/Coal Ratios, Coal Particle Sizes, and Inlet Angles on the Gasifier Performance (300MW급 Shell형 1단 분류층 석탄 가스화기의 전산수치해석 : 산소/스팀/석탄 주입비, 석탄입자 크기, 주입 노즐 각도가 가스화기 성능에 미치는 영향)

  • Song, Ji-Hoon;Kang, Min-Woong;Seo, Dong-Kyun;Lim, Sung-Jin;Paek, Min-Su;Hwang, Jung-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.227-240
    • /
    • 2010
  • Coal gasification is heading for a great future as one of the cleanest energy sources, which can produce not only electricity and heat, but also gaseous and liquid fuels from the synthesis. The work focuses on 300MW shell type one-stage entrained flow coal gasifier which is used in the Integrated coal Gasification Combined Cycle(IGCC) plant as a reactor. As constructing an IGCC plant is considerably complicated and expensive compared with a pulverized-coal power plant, it is important to determine optimum design factors and operating conditions using a computational fluid dynamics (CFD) model. In this study, the results of numerical calculations show that $O_2$/Coal ratio, 0.83, Steam/Coal ratio, 0.05, coal particle diameter, $100{\mu}m$, injection angle, $4^{\circ}$ (clockwise) are the most optimum in this research.

Economic Evaluations of Direct/indirect Coal Liquefaction Processes (직.간접석탄액화공정의 경제성 평가)

  • Park, Joo-Won;Bae, Jong-Soo;Kweon, Yeong-Jin;Kim, Hak-Joo;Jung, Heon;Han, Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.857-860
    • /
    • 2009
  • This report examines the economic feasibility of a commercial 50,000 barrel per day direct/indirect coal liquefaction (DCL/ICL) facility to produce commercial-grade diesel and naphtha liquids from medium-sulfur bituminous coal. The scope of the study includes capital and operating cost estimates, sensitivity analysis and a comparative financial analysis. Based on plant capacity of 50,000BPD, employing Illinois #6 bituminous coal as feed coal the total capital cost appeared $3,994,858,000(DCL) and $4,942,976,000(ICL). Also, the internal rate of return of DCL/ICL appeared 13.27% and 12.68% on the base condition. In this case, coal price and sale price of products were the most influence factors. And ICL's payback period(6.8 years) was longer than DCL's (6.6 years). According to sensitivity analyses, the important factors on DCL/ICL processes were product sale price, feed coal price and the capital cost in order.

  • PDF

Characteristics of Sulfur-Solidified Materials by the Physical Properties of Coal Bottom Ash (석탄 바닥재의 물리적 성질에 따른 유황 고형화 성형물의 특성)

  • Hong, Bumui;Choi, Changsik;Jang, Eunsuk;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.58-65
    • /
    • 2014
  • In this work, we constructed the sulfur-solidified materials using coal bottom ash from four thermal power stations in Korea and investigated their practical data for the production of industrial construction compounds. To manufacture the sulfur-solidified materials, we used a continuous mixer with the uniaxial screw-type. Also, coal bottom ash was used as a fine aggregate below 1.2 mm because of the operation characteristics for the continuous mixer. When the sulfur-solidified materials were produced with diverse sulfur concentrations (15, 20, 25, 30 wt%), compressive strength properties were analyzed. In addition, when the coal bottom ash was used with a high calcium oxide content, crack was found in the test product and pH of submerged liquid was above 12. These experimental results could be effectively applied to the recycling technology of coal bottom ash.

Cost-Benefit Analysis of Coal-to-Liquids Plant Construction in Mongolia (몽골에서의 석탄액화플랜트 건설에 대한 경제성평가)

  • Dagvadorj, Batbold;Kim, Jae-Gon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • 몽골은 석탄 매장량이 매우 풍부하고 석유연료를 전적으로 수입에 의존하기 때문에, 석탄액화플랜트 건설에 필요한 충분한 여건을 갖추고 있다. 본 연구에서는 몽골에 하루 10,000배럴의 석유연료를 생산할 수 있는 석탄액화플랜트를 건설할 경우에 대한 경제성분석을 수행한다. 먼저 기존에 있는 산업계의 석탄액화플랜트 프로젝트 데이터와 학계의 연구결과를 토대로 몽골 석탄액화플랜트 건설에 필요한 비용과 기대수명, 그리고 예상 수명기간 동안 운영했을 때 발생하는 운영비용과 소득을 추정한다. 추정된 비용과 소득을 이용하여 네 가지 시나리오(기본, 악화 1, 악화 2, 매우 악화) 하에서의 경제성 분석을 실시한다. 분석결과 투자수익률이 기본 시나리오에서는 45%에 가까우며, 가장 나쁜 시나리오에서도 5%보다 컸다. 이는 몽골 석탄액화플랜트 건설이 경제적으로 충분히 타당성이 있음을 나타낸다.

Economic Evaluations of Direct Coal Liquefaction Processes (직접석탄액화 공정의 경제성 평가)

  • Park, Joo-Won;Kweon, Yeong-Jin;Kim, Hak-Joo;Jung, Heon;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.127-132
    • /
    • 2009
  • This report examines the economic feasibility of a commercial 50,000 barrel per day direct coal liquefaction(DCL) facility to produce commercial-grade diesel and naphtha liquids from medium-sulfur bituminous coal. The scope of the study includes capital and operating cost estimates, sensitivity analysis and a comparative financial analysis. Based on plant capacity of 50,000BPD, employing Illinois #6 bituminous coal as feed coal the total capital cost appeared $3,994,858,000. Also, the internal rate of return of DCL appeared 6.60% on the base condition. In this case, coal price and sale price of products were the most influence factors. And DCL's payback period demanded a long time(12.3 years), because of high coal price at the present time. According to sensitivity analyses, the important factors on DCL processes were product sale price, feed coal price and the capital cost in order.

Economic Evaluations of DCL/ICL Processes (직·간접석탄액화공정의 경제성 평가)

  • Park, Joo-Won;Bae, Jong-Soo;Kweon, Yeong-jin;Kim, Hak-Joo;Jung, Heon;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.781-787
    • /
    • 2009
  • This report investigates the economic proprieties of commercial 50,000 barrel per day direct/indirect coal liquefaction(DCL/ICL) plants to produce commercial-grade diesel and naphtha liquids. The scope of the study includes capital and operating cost estimates, sensitivity analyses and a comparative financial analyses. Based on plant capacity of 50,000BPD, employing Illinois #6 bituminous coal as feed coal, the total capital cost appeared $3,994,858,000(DCL) and $4,962,263,000(ICL). Also, the internal rate of return of DCL/ICL appeared 13.27% and 12.68% on the base condition respectively. In this case, coal price and sale price of products were the most influence factors. And ICL's payback period(6.8 years) was longer than DCL's(6.6 years). According to sensitivity analyses, the important factors on both DCL/ICL processes were product sale price, feed coal price and the capital cost in order.

Emission Characteristics of Fine Particles from Thermal Power Plants (화력발전소의 미세먼지 배출특성)

  • Park, Sooman;Lee, Gayoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.455-460
    • /
    • 2020
  • In order to identify the characteristics of fine particle emissions from thermal power plants, this study conducted measurement of the primary emission concentration of TPM, PM10 and PM2.5 according to Korea standard test method (ES 01301.1) and ISO 23210 method (KS I ISO 23210). Particulate matters were sampled in total 74 units of power plants such as 59 units of coal-fired power plants, 7 units of heavy oil power plants, 2 units of biomass power plant, and 6 units of liquid natural gas power plants. The average concentration of TPM, PM10, PM2.5 by fuel are 3.33 mg/m3, 3.01 mg/m3, 2.70 mg/m3 in coal-fired plant, 3.02 mg/m3, 2.99 mg/m3, 2.93 mg/m3 in heavy oil plant, 0.114 mg/m3, 0.046 mg/m3, 0.036 mg/m3 in LNG plant, respectively. These results of TPM, PM10 and PM2.5 were satisfied with the standards of fine dust emission allowance in all units of power plants, respectively. Also, this study evaluated the characteristics of fine particle emissions by conditions of power plants including generation sources, boiler types and operation years and calculated emission factors and then evaluated fine particle emissions by sources of electricity generation.

Study on the immersion test of geopolymers made by recycling of coal ash (석탄회를 재활용한 지오폴리머 침지실험에 관한 연구)

  • Bang, John J.;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.199-205
    • /
    • 2018
  • A geopolymer was produced from coal ash generated from an integrated gasification combined cycle (IGCC) plant and its water resistance was evaluated. For this purpose, the geopolymer specimens were immersed in water for 30 days to measure changes in microstructure and alkalinity of the immersion liquid. Particularly, the experiment was carried out with foaming status of the geopolymers and parameters of room temperature aging condition, and immersion time. The foamed geopolymer containing 0.1 wt% Si-sludge had pores with a diameter of 1 to 3 mm and exhibited excellent foamability. Also, the calcium-silicate-hydrate crystal phase appeared in the foamed geopolymer. In the geopolymer immersion experiment, the pH of the immersion liquid increased with time, because the un-reacted alkali activator remained was dissolved in the immersion liquid. From the pH change of the immersion liquid, it was found that geopolymer reaction in the foamed specimen was completed faster than the non-foamed specimen. Through this study, it was possible to successfully produce foamed and non-foamed geopolymers recycled from IGCC coal ash. Also the necessary data for the safe application of IGCC coal ash-based geopolymers to areas where water resistance is needed were established; for example, the process conditions for room temperature aging time, effect of foaming status, immersion time and so on.