• Title/Summary/Keyword: Coal gasification process

Search Result 94, Processing Time 0.03 seconds

Coal gasification with High Temperature Steam (고온(高溫) 수증기(水蒸氣)를 이용한 석탄(石炭) 가스화)

  • Yun, Jin-Han;Kim, Woo-Hyun;Keel, Sang-In;Min, Tai-Jin;Roh, Seon-Ah
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.28-33
    • /
    • 2007
  • Coal is the most abundant energy source and deposited in every area of world. Combustion process with lower efficiency has been mainly used. Therefore, implementation of more efficient technologies, involving gasification, combined cycles and fuel cells, would be a key issue in the plans for more efficient power generation. In these technologies, gasification has been studied for decades. However, coal gasification to high value combustible gas such as hydrogen and carbon monoxide is focused again due to high oil price. The gaseous product, called syngas, can be effectively utilized in a variety of ways ranging from electricity production to chemical industry (as feedstock). In this study, coal gasification with ultra high temperature steam has been performed. The effect of steam/carbon ratio on the produced gas concentrations, gasification rate and additional products like tar, ammonia and cyan compounds has been determined.

Economic Assessment of a Indirect Liquefaction Process using a Gasification with Petroleum Coke/Coal Mixtures (석유코크스/석탄 혼합 가스화를 이용하는 액화 공정의 경제성 평가)

  • Shin, Ji-Hoon;Lee, Lu-Se;Lee, See-Hoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.501-509
    • /
    • 2016
  • The economic feasibility of a commercial indirect liquefaction process with the co-gasification process of petroleum coke which has been recognized as hazardous waste because of high sulfur content and bituminous coal and sub-bituminous coal mixtures was assessed. The 2,000 ton/day scale indirect liquefaction process including co-gasification, clean up, Fischer-Tropsch conversion and so on was assumed and used to analyze economical efficiencies with various conditions. Financial data from previous studies were modified and used and economical sensitivities with various mixture ratios were evaluated in this study. As a result, economic values of petroleum coke were superior than those of coals because of increasing sulfur sale. Also, mixtures with petroleum coke and bituminous coal was more favorable that those with petroleum coke and sub-bituminous coal due to lower moisture content. In case of sub-bituminous coal, the mixture ratio with petroleum coke had to be over 40wt% for the IRR of mixture to surpass 10%.

Parametric Sensitivity of the Flow Characteristics on Pulverized Coal Gasification (유동변수들이 석탄가스화에 미치는 민감도에 대한 수치적연구)

  • Cho, Han-Chang;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • In order to analyze the sensitivity on the pulverized coal flames of the several variables, a numerical study was conducted at the gasification process. Eulerian approach is used for the gas phase, whereas lagrangian approach is used for the solid phase. Turbulence is modeled using the standard $k-{\varepsilon}$ model. The turbulent combustion incorporates eddy dissipation model. The radiation was solved using a Monte-Carlo method. One-step two-reaction model was employed for the devolatilization of Kideco coal. In pulverized flame of long liftoff height, the initial turbulent intensity seriously affects the position of flame front. The radiation heat transfer and wall heat loss ratio distort the temperature distributions along the reactor wall, but do not influence the reactor performance such as coal conversion, residence time and flame front position. The primary/secondary momentum ratio affects the position of flame front, but the coal burnout is only slightly influenced. The momentum ratio is a variable only associated with the flame stabilization such as flame front position. The addition of steam in the reactor has a detrimental effect on all the aspects, particularly reactor temperature and coal burnout.

  • PDF

Dynamic Modeling for the Coal Gasification Process (석탄가스화공정의 동적모델링)

  • 유희종;김원배;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1997.10a
    • /
    • pp.47-53
    • /
    • 1997
  • Dynamic models have been developed for the coal gasification process by using a modular approach method. The complete unit is divided, for the convenience of the analysis, into several sections, viz. the coal feeding system, the gasifier, the gas cooler, the valves, the pumps, etc. The dynamic behaviour of each section is described in mathematical terms and each term is modulized into several submodels consisting of the complete process. To represent the behaviour of the fluid flow, the hydraulic network is proposed. Results for the more important system variables are presented and discussed. There dynamic models enable process and control engineers to quickly review a wide range of alternative operating and control strategies and help operators to easily understand the process dynamics and eventually can be applied to the design of commercial scale IGCC plants.

  • PDF

Kinetic of Catalytic CO2 Gasification for Cyprus Coal by Gas-Solid Reaction Model (기-고체 반응모델을 이용한 Cyprus탄의 CO2 저온촉매가스화 반응거동)

  • Hwang, Soon Choel;Lee, Do Kyun;Kim, Sang Kyum;Lee, Si Hyun;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.653-662
    • /
    • 2015
  • In general, the coal gasification has to be operated under high temperature ($1300{\sim}1400^{\circ}C$) and pressure (30~40 bar). However, to keep this conditions, it needs unnecessary and excessive energy. In this work, to reduce the temperature of process, alkali catalysts such as $K_2CO_3$ and $Na_2CO_3$ were added into Cyprus coal. We investigated the kinetic of Cyprus char-$CO_2$ gasification. To determine the gasification conditions, the coal (with and without catalysts) gasified with fixed variables (catalyst loading, catalytic effects of $Na_2CO_3$ and $K_2CO_3$, temperatures) by using TGA. When catalysts are added by physical mixing method into Cyprus coal the reaction rate of coal added 7 wt% $Na_2CO_3$ is faster than raw coal for Cyprus char-$CO_2$ gasification. The activation energy of coal added 7 wt% $Na_2CO_3$ was calculated as 63 kJ/mol which was lower than raw char. It indicates that $Na_2CO_3$ can improve the reactivity of char-$CO_2$ gasification.

The Newest Technology Development and Commercialization Status of Coal Gasification (석탄가스화 기술의 최신 개발 동향 및 상업화 현황)

  • Lee, Jin-Wook;Yun, Yongseung;Kang, Won-seok
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.150-163
    • /
    • 2015
  • Gasification technology is one of the representative next-generation fossil fuel utilization technologies, converting low grade fossil fuels such as coal, heavy residue oil, pet-coke into highly clean and efficient energy sources. Accordingly, related market demand for gasification technology is ever increasing steadily and rapidly. A few years ago, conventional pulverized coal utilization technology had an edge over the gasification technology but the most significant technical barrier of limited capacity and availability has been largely overcome nowadays. Futhermore, it will be more competitive in the future with the advancement of related technologies such as gas turbine, ion transfer membrane and so on. China has recently completed a commercialization-capable large-scale coal gasification technology for its domestic market expansion and foreign export, rapidly becoming a newcomer in the field and competing with existing US and EU technical leadership at comparable terms. Techno-economic aspect deserves intensive attention and steady R&D efforts need to continue in organized, considering that gasification technology is quite attractive combined with $CO_2$ capture process and coal to SNG plant is economically viable in Korea where natural gas is very expensive. In the present paper, recent technology development and commercialization trend of many leading companies with coal gasification expertise have been reviewed with significant portion of literature cited from the recently held '2014 Gasification Technology Conference'.

Review on the water-gas shift process for a coal SNG project (석탄 SNG 생산설비의 수성가스전환 공정 분석)

  • Kim, Youngdo;Shin, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF

The Comparative Study on the Gasification Process between Coal Water Slurry and Dry Pulverized Coal (습식 및 건식 석탄가스화공정에 대한 비교 연구)

  • Shim, Hyun-Min;Wang, Hong-Yue;Jung, Su-Yong;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.788-791
    • /
    • 2007
  • 기존의 미분탄 화력발전을 대체할 수 있는 차기 주자인 가스화복합발전(Integrated Gasification Combined Cycle) 기술은 단순히 열과 전기를 얻는데 그치지 않고 $CO_2$ 저감뿐만 아니라 다양한 형태의 2차 에너지원과 화학원료를 생산할 수 있는 기술이다. 상용화 운전 중인 기존의 IGCC 플랜트는 석탄 공급에 있어 건조된 미분탄(dry pulverized coal) 형태로 공급하는 건식 형태와 석탄슬러리(Coal water slurry)의 액상으로 공급하는 습식 형태로 대별되고 있다. 본 연구에서는 ASPEN plus를 이용하여 상용화 IGCC 플랜트에 대한 기본 모델을 구축하였으며, 산지별로 대상 탄종을 illinois #6(미국), Shenhua(중국), Drayton(호주)로 선정하여 가스화공정에 대한 성능을 해석하였다. 동일한 발전 출력을 얻고자 하였을 때, 석탄의 공급방식에 따라 필요한 석탄과 유틸리티 공급량과 가스화기 전${\cdot}$후단에서의 운전특성과 생성되는 합성가스(syngas) 조성, 냉가스(cold gas) 효율 및 탄소 전환율을 통해 각 case에 대한 플랜트 특성을 비교하였다.

  • PDF

A Simulation Study on the Gasifier Performance in the Coal/Biomass Mixture (석탄과 바이오매스 혼합공급에 따른 가스화 특성 모사 연구)

  • Wang, Hong-Yue;Shim, Hyun-Min;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.784-787
    • /
    • 2007
  • A process flowsheet simulation model based on ASPEN PLUS was developed to investigate the effect of co-gasification of coal and rice husk on the gasifier performance and pollutant emissions in IGCC power plant. The analyses were done for an 02-blown, pulverized gasifier using coal and rice husk as feedstock, parameter employed the blending ratio of rice husk in coal were investigated. From the simulation results, it was found that gaseous pollutant emissions were reduced substantially with the increase of the blending ratio of rice husk. An optimum range between 15% and 25% rice husk-to-coal ratio was found to be the optimum point in terms of gaseous pollutant emission per energy output for sui fur and nitrogen compounds.

  • PDF

A Kinetic Study of Steam Gasification of Low Rank Coal, Wood Chip and Petroleum Coke (저등급 석탄, Wood Chip, Petroleum Coke의 수증기 가스화반응 Kinetics 연구)

  • Gong, Sujin;Zhu, Xueyan;Kim, Yangjin;Song, Byungho;Yang, Won;Moon, Woongsig;Byoun, Yoonseop
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.80-87
    • /
    • 2010
  • Lignite of low rank coal and petroleum coke of high sulfur content can be high potential energy sources for coal gasification process because of their plentiful supply. The kinetic study of steam gasification has been performed in an atmospheric thermobalance with wood chip, lignite, bituminous, anthracite, pet-coke. The effects of gasification temperature($600{\sim}850^{\circ}C$) and partial pressure of steam(30~90 kPa) on the gasification rate have been investigated. The modified volumetric reaction model was applied to the experimental data to describe the behavior of carbon conversion and to evaluate the needed kinetic parameters. Lignite and wood chip with high volatile content showed high average gasification rates comparing to other fuel and thus they might be proper fuel for gasification processes. The activation energies for wood chip, lignite, bituminous, anthracite, and pet-coke through Arrhenius plot were found to be 260.3, 167.9, 134.6, 82.2, 168.9 kJ/mol, respectively. The expression of apparent reaction rates for steam gasification of various chars have been proposed as basic information for the design of coal gasification processes.