DOI QR코드

DOI QR Code

Economic Assessment of a Indirect Liquefaction Process using a Gasification with Petroleum Coke/Coal Mixtures

석유코크스/석탄 혼합 가스화를 이용하는 액화 공정의 경제성 평가

  • Shin, Ji-Hoon (Department of Mineral Resource & Energy Engineering, National University of Chonbuk) ;
  • Lee, Lu-Se (Department of Mineral Resource & Energy Engineering, National University of Chonbuk) ;
  • Lee, See-Hoon (Department of Mineral Resource & Energy Engineering, National University of Chonbuk)
  • 신지훈 (전북대학교 자원에너지공학과) ;
  • 이루세 (전북대학교 자원에너지공학과) ;
  • 이시훈 (전북대학교 자원에너지공학과)
  • Received : 2015.12.19
  • Accepted : 2016.03.02
  • Published : 2016.08.01

Abstract

The economic feasibility of a commercial indirect liquefaction process with the co-gasification process of petroleum coke which has been recognized as hazardous waste because of high sulfur content and bituminous coal and sub-bituminous coal mixtures was assessed. The 2,000 ton/day scale indirect liquefaction process including co-gasification, clean up, Fischer-Tropsch conversion and so on was assumed and used to analyze economical efficiencies with various conditions. Financial data from previous studies were modified and used and economical sensitivities with various mixture ratios were evaluated in this study. As a result, economic values of petroleum coke were superior than those of coals because of increasing sulfur sale. Also, mixtures with petroleum coke and bituminous coal was more favorable that those with petroleum coke and sub-bituminous coal due to lower moisture content. In case of sub-bituminous coal, the mixture ratio with petroleum coke had to be over 40wt% for the IRR of mixture to surpass 10%.

황함유량이 높아 독성 폐기물로서 분류되는 석유코크스를 역청탄 및 아역청탄과 혼합하여 가스화 공정을 통해 액체연료를 생산하는 공정의 경제성을 분석하였다. 공정의 경제성을 분석하기 위한 2,000 톤/일 규모의 액화 공정은 가스화, 정제, Fischer-Tropsch 전환 등으로 이루어진다. 기발표된 자료들로부터 적절한 검토 기준을 통해 건설비용 및 매출액을 산정하였고 석유코크스/석탄의 혼합비에 따른 경제성을 평가하였다. 경제성 평가 결과, 원소황의 생산과 판매 증가로 인해서 석유코크스의 경제성이 석탄보다 우수했으며 수분 함량이 낮은 역청탄과의 혼합이 보다 높은 경제성을 가지는 것으로 나타났다. 아역청탄의 경우, IRR (Internal rate of return)이 10% 이상이 되기 위해서는 석유코크스와의 혼합이 적어도 40 wt% 이상이 되어야 함을 확인하였다.

Keywords

References

  1. Higman, C., "State of the Gasification Industry: Worldwide Gasification Database 2014 Update," Gasification Technology Conference, October, Washington, DC, USA(2014).
  2. Park, S. H., Chung, S. W., Lee, S. K., Choi, H. K. and Lee, S. H., "Thermo-economic Evaluation of 300 MW Class Integrated Gasification Combined Cycle with Ash Free Coal (AFC) Process," Applied Thermal Engineering, 89, 843-852(2015). https://doi.org/10.1016/j.applthermaleng.2015.06.066
  3. Kook, J. W., Shin, J. H., Gwak, I. S. and Lee, S. H., "A Reaction Kinetic Study of $CO_2$ Gasification of Petroleum Coke, Biomass and Mixture," Appl. Chem. Eng., 26(2), 184-190(2015). https://doi.org/10.14478/ace.2015.1006
  4. Ra, H. W., Lee, S. H., Yoon, S. J., Choi, Y. C., Kim, J. H. and Lee, J. G., "Entrained-flow Coal Water Slurry Gasification," Korean Chem. Eng. Res., 48(2), 129-139(2010).
  5. Kim, S., "Analysis of Economic Feasibility of Integrated Gasification Combined Cycle (IGCC) as a Next Generation Power Supply in Korea," Journal of economic research, 13, 149-174(2008).
  6. Lee, S. H., Yoon, S. J., Choi, Y. C., Kim, J. H. and Lee, J. G., "Characteristics of Coal Methanation in a Hydrogasifier," Korean Chem. Eng. Res., 44(6), 631-635(2006).
  7. Lee, S. H., Choi, K. B., Lee J. G. and Kim J. H., "Gasification Characteristics of Combustible Wastes in a 5 ton/day Fixed Bed Gasifier," Korean J. Chem. Eng., 23(4), 576-580(2006). https://doi.org/10.1007/BF02706797
  8. Holt, N. A. H., "Coal Gasification Research, Development and Demonstration-needs and Opportunities," Gasification Technologies, October, San Francisco(2001).
  9. Mantripragada, H. C. and Rubin, E. S., "Performance, Cost and Emissions of Coal-to-liquids (CTLs) Plants Using Low-quality Coals Under Carbon Constratints," Fuel, 103, 805-813(2013). https://doi.org/10.1016/j.fuel.2012.09.038
  10. Seo, M. W., Kim, S. D., Na, J. G. and Lee, S. H., "Pyrolysis, Partial Oxidation, and Combustion Characteristics of Micro Algae," Korean Chem. Eng. Res., 47(6), 734-739(2009).
  11. Yoon, S. J., Choi, Y. C., Lee, S. H. and Lee, J. G., "Thermogravimetric Study of Coal and Petroleum Coke for co-gasification," Korean J. Chem. Eng., 24(3), 512-517(2007). https://doi.org/10.1007/s11814-007-0090-y
  12. Yoon, S. J., Choi, Y. C., Hong, J. C., Ra, H. W. and Lee, J. G., "Gasificatin of Coal-petroleum Coke-water Slurry in a 1 ton/d Entrained Flow Gasifier," Korean Chem. Eng. Res., 46(3), 561-566(2008).
  13. Yoon, S. J., Choi, Y. C. and Lee, J. G., "The Effect of Additive Chemicals on the Viscosity of Coal-petroleum Coke-water Slurry Fuel for a Gasification Process," Korean J. Chem. Eng., 26(5), 1259-1264(2009). https://doi.org/10.1007/s11814-009-0223-6
  14. Lee, S. H., Yoon, S. J., Ra, H. W., Son, Y. I., Hong, J. C. and Lee J. G., "Gasification Characteristics of Coke and Mixture with Coal in An Entrained-flow Gasifier," Energy, 35(8), 3239-3244(2010). https://doi.org/10.1016/j.energy.2010.04.007
  15. Park, J. W., Bae, J. S., Kweon, Y. J., Kim, H. J., Jung, H. and Han, C., "Economic Evaluation of DCL/ICL Processes," Korean Chem. Eng. Res., 47(6), 781-787(2009).
  16. Bibber, L. V., Shuster, Erik, Haslbeck, J., Rutkowski, M., Olson, S. and Kramer, S., "Technical and Economic Assessment of Small-scale Fischer-tropsch Liquids Facilities," DOE/NETL-2007/1253, National Energy Technology Laboratory, USA(2007).
  17. Gong, S. Zhu, J., X., Kim, Y. J., Song, B. H., Yang, W., Moon, W. S. and Byoun, Y. S., "A Kinetic Study of Steam Gasification of Low Rank Coal, Wood Chip and Petroleum Coke," Korean Chem. Eng. Res., 48(1), 80-87(2010).
  18. Hernandez, J. J., Aranda-Almansa, G. and Serrano, C., "Co-gasification of Biomass Wastes and Coal-coke Blends in an Entrained Flow Gasifier: An Experimental Study," Energy Fuels, 24(4), 2479-2488(2010). https://doi.org/10.1021/ef901585f
  19. Fermoso, J., Arias, B., Plaza, M. G., Pevida, C., Rubiera, F., Pis, J. J., Garcia-Penam F. and Casero, P., "High-pressure co-gasification of Coal with Biomass and Petroleum Coke," Fuel Process Technol., 90(7), 926-932(2009). https://doi.org/10.1016/j.fuproc.2009.02.006
  20. Phillips, S., Aden, A., Jechura, J. and Dayton, D., "Thermochemical Ethanol Via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass," NREL/TP-510-41168, National Renewable Energy Laboratory, USA(2007).
  21. NETL, "Capital Cost Scaling Methodology," DOE/NETL-341/013113, National Energy Technology Laboratory, USA(2013).
  22. Lee, J. M., Kim, D. W., Kim, J. S., Kim, J. J. and Kim, H. S., "Economic Feasibility of Conversion of the Pulverized Coal Firing Boiler Using Korean Anthracite Into A Circulating Fluidized Bed Boiler," Korean Chem. Eng. Res., 44(5), 489-497(2006).
  23. http://www.kcoal.or.kr/info/info05.php.
  24. http://www.platts.com/market-data.

Cited by

  1. 톱밥으로부터 생산되는 개질 바이오오일 생산공장의 공정모사 및 경제성 분석 vol.56, pp.4, 2016, https://doi.org/10.9713/kcer.2018.56.4.496
  2. 순환유동층 보일러 로내 탈황을 위한 석회석 평가 vol.57, pp.6, 2016, https://doi.org/10.9713/kcer.2019.57.6.853