DOI QR코드

DOI QR Code

Improved Ethanol Production from Deacetylated Yellow Poplar (Liriodendron tulipifera) by Detoxification of Hydrolysate and Semi-SSF

에탄올 향상을 위한 탈아세틸화 백합나무 당화액의 발효저해물질 제거와 semi-동시당화발효

  • Kim, Jo-Eun (Department of Forest Products and Technology, Chonnam National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology, Chonnam National University)
  • 김조은 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2015.10.12
  • Accepted : 2016.03.02
  • Published : 2016.08.01

Abstract

In order to remove acetyl group from yellow poplar, deacetylation was performed using sodium hydroxide (NaOH) prior to oxalic acid pretreatment. During the deacetylation ($60^{\circ}C$ for 80 min, 0.8% NaOH), most of the acetyl group were removed from hemicellulose. Simultaneous saccharification and fermentation (SSF) and semi-SSF were carried out based on solid loading (10, 12.5, 15%) of deacetylated biomass and pre-hydrolysis with enzymes (0, 6, 12, 24 h). The highest ethanol was obtained as 26.73 g/L after 120 h when 10% of biomass was used for SSF. It is corresponding to 88.41% of theoretical ethanol yield. At the 12.5% and 15% of biomass loading, the highest ethanol was obtained from 6 h pre-hydrolysis. It was 32.34 g/L and 27.15 g/L, respectively, and corresponding to ethanol yield of 85.58 and 59.87%. In order to remove fermentation inhibitors from hydrolysates, overliming was performed using calcium hydroxide ($Ca(OH)_2$). The highest ethanol was 5.28 g/L after 72 h of fermentation.

본 연구에서는 백합나무의 아세틸기 제거를 위해 전처리 전에 수산화나트륨을 이용하여 탈아세틸화를 수행하였다. 0.8%의 수산화나트륨을 첨가하여 $60^{\circ}C$에서 80분 동안 반응시켜 헤미셀룰로오스로부터 대부분의 아세틸기를 제거하였다. 탈아세틸화 처리된 바이오매스를 옥살산 전처리에 이용하였으며, 전처리된 바이오매스 투입량(10, 12.5, 15%) 및 효모 투입시간(0, 6, 12, 24시간)에 따라 동시당화발효 및 semi-동시당화발효를 수행하였다. 최대 에탄올 수율은 바이오매스 투입량 10%에서 효모를 당화시작과 동시에 첨가했을 때 120시간 후 26.73 g/L의 에탄올을 생산하였으며 이것은 88.14%의 에탄올 수율에 해당하였다. 바이오매스 투입량 12.5%와 15% 조건에서는 효모 투입시간 6시간 조건에서 각각 32.34 g/L, 27.15 g/L의 에탄올을 생산하였고, 이는 각각 85.58%와 59.87%의 에탄올 수율에 해당하였다. 옥살산 전처리 후 얻어진 액상 가수분해산물로부터 발효저해물질의 제거를 위해 수산화칼슘을 처리하였으며 발효 72시간 후 5.28 g/L의 최대 에탄올을 얻었다.

Keywords

References

  1. Kim, H. Y., Lee, J. W., Jeffries, T. W. and Choi, I. G., "Evaluation of Oxalic Acid Pretreatment Condition Using Response Surface Method for Producing Bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by Simultaneous Saccharification and Fermentation," J. Korean Wood Sci. Tech., 39(1), 75-85(2011). https://doi.org/10.5658/WOOD.2011.39.1.75
  2. Lim, W. S. and Lee, J. W., "Enzymatic Hydrolysis Condition of Pretreated Corncob by Oxalic Acid To Improve Ethanol Production," J. Korean Wood Sci. Tech., 40(4), 294-301(2012). https://doi.org/10.5658/WOOD.2012.40.4.294
  3. Sun, Y. and Cheng, J., "Hydrolysis of Lignocellulosic Materials for Ethanol Production," Bioresour. Technol., 83, 1-11(2002). https://doi.org/10.1016/S0960-8524(01)00212-7
  4. Allen, S. G., Schulman, D., Lichwa, J., Antal, M. J., Jennings, E. and Elander, R., "A Comparison of Aqueous and Dilute-acid-single-temperature Pretreatment of Yellow Poplar Sawdust," Ind. Eng. Chem. Res., 40(10), 2352-2361(2001). https://doi.org/10.1021/ie000579+
  5. Gupta, R., Sharma, K. K. and Kuhad, R. C., "Separate Hydrolysis and Fermentation (SHF) of Prosopis Juliflora, a Woody Substrate, for the Production of Cellulosic Ethanol by Saccharomyces Cerevisia and Pichia Stipitis-NCIM 3498," Bioresour. Technol., 100, 1214-1220(2009). https://doi.org/10.1016/j.biortech.2008.08.033
  6. Kundu, C., Lee, H. J. and Lee, J. W., "Enhanced Bioethanol Production from Yellow Poplar by Deacetylation and Oxalic Acid Pretreatment Without Detoxification," Bioresour. Technol., 178, 28-35(2014).
  7. Jeong, S. Y., Trinh, L. T., Lee, H. J. and Lee, J. W., "Improvement of the Fermentability of Oxalic Acid Hydrolysates by Detoxification Using Electrodialysis and Adsorption," Bioresour. Technol., 152, 444-449(2014). https://doi.org/10.1016/j.biortech.2013.11.029
  8. Pandey, A., "Pretreatment of Biomass," Elsevier, Netherlands, 27-60(2014).
  9. Kim, N. and Kim, J. S., "Acetic Acid Production from Cellulosic Biomass by Simultaneous Saccharification and Fermentation," Theories Applicat. Chem. Eng., 10(2), 1546-1549(2004).
  10. Aggarwal, N. K., Nigam, P., Singh, D. and Yadav, B. S., "Process Optimization for the Production of Sugar for the Bioethanol Industry from Tapioca, a Non-Conventional Source of Starch," J. Microbiol. Biotech., 17, 738-787(2001).
  11. Mukerjea, R., Slocum, G. and Robyt, J. F., "Significant Differences in the Activities of a-amylase in the Absence and Presence of Polyethylene Glycol Assayed on Eight Starches Solubilized by Two Methods," Carbohydr Research, 341, 2049-2054(2006). https://doi.org/10.1016/j.carres.2006.05.009
  12. Kim, S. and Dale, B. E., "Global Potential Bioethanol Production from Wasted Crops and Crop Residues," Biomass Bioener., 26, 361-375(2004). https://doi.org/10.1016/j.biombioe.2003.08.002
  13. Shen, J. and Agblevor, F. A., "Modeling Semi-simultaneous Saccharification and Fermentation of Ethanol Production from Cellulose," Biomass Bioener., 34, 1098-1107(2010). https://doi.org/10.1016/j.biombioe.2010.02.014
  14. Lee, J. W. and Jeffries, T. W., "Efficiencies of Acid Catalysts in the Hydrolysis of Lignocellulosic Biomass Over a Range of Combined Severity Factors", Bioresour. Technol., 102, 5884-5890(2011). https://doi.org/10.1016/j.biortech.2011.02.048
  15. Kim, J. S., "The Characteristics of Alkaline Pretreatment Methods of Cellulosic Biomass," Korean Chem. Eng. Res., 51(3), 303-307(2013). https://doi.org/10.9713/kcer.2013.51.3.303
  16. Tian, S., Luo, X. L., Yang, X. S. and Zhu, J. Y., "Robust Cellulosic Ethanol Production from SPORL-Pretreated Lodgepole Pine Using an Adapted Strain Saccharomyces Cerevisiae Without Detoxification," Bioresour. Technol., 101(22), 8678-8685(2010). https://doi.org/10.1016/j.biortech.2010.06.069
  17. Selig, M., Weiss, N. and Ji, Y., "Enzymatic Saccharification of Lignocellulosic Biomass, NREL/TP-510-42629," National Renewable Energy Laboratory(2008).
  18. Lee, J. W., Rodrigues, R. C. L. B. and Jeffries, T. W., "Simultaneous Saccharification and Ethanol Fermentation of Oxalic Acid Pretreated Corncob Assessed with Response Surface Methodology," Bioresour. Technol., 100, 6307-6311(2009). https://doi.org/10.1016/j.biortech.2009.06.088
  19. Ji, Z., Zhang, X., Ling, Z., Zhou, X., Ramaswamy, S. and Xu, F., "Visualization of Miscanthus ${\times}$ giganteus Cell Wall Deconstruction Subjected to Dilute Acid Pretreatment for Enhanced Enzymatic Digestibility," Biotechnology for Biofuels, 8, 103(2015). https://doi.org/10.1186/s13068-015-0282-3
  20. Seo, Y. J., Lim, W. S. and Lee, J. W., "Optimal Condition for Simultaneous Saccharification and Fermentation Using Pretreated Corncob by Oxalic Acid," J. Korean Wood Sci. Tech., 39(6), 490-497(2011). https://doi.org/10.5658/WOOD.2011.39.6.490
  21. Kim, S. B., Lee, J. H., Yang, X., Lee, J. W. and Kim, S. W., "Furfural Production from Hydrolysate of Barley Straw After Dilute Sulfuric Acid Pretreatment," Korean J. Chem. Eng., 32(11), 2280-2284(2015). https://doi.org/10.1007/s11814-015-0029-7
  22. Kim, H. Y., Lee, J. W., Jeffries, T. W. and Gwak, K. S., "Effect of Oxalic Acid Pretreatment on Yellow Poplar (Liriodendron tulipifera) for Ethanol Production," J. Korean Wood Sci. Tech., 37(4), 397-405(2009).
  23. Millati, R., Niklasson, C. and Taherzadeh, J. M., "Effect of pH, Time and Temperature of Overliming on Detoxification of Diluteacid Hydrolyzates for Fermentation by Saccharomyces Cerevisiae," Bioresour. Technol., 38(4), 515-522(2002).
  24. Palmqvist, E., Grage, H., Meinander, N. Q. and Hahn-Hagerdal, B., "Main and Interaction Effects of Acetic Acid, Furfural, and p-Hydroxybenzoic Acid on Growth and Ethanol Productivity of Yeasts," Biotechnol. Bioeng., 63, 46-55(1999). https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J
  25. Lu, J., Li, X., Yang, R., Yang, L., Zhao, J., Liu, Y. and Qu, Y., "Fed-Batch Semi-simultaneous Saccharification and Fermentation of Reed Pretreated with Liquid Hot Water for Bio-ethanol Production Using Saccharomyces cerevisiae," Bioresour. Technol., 144, 539-547(2013). https://doi.org/10.1016/j.biortech.2013.07.007