• Title/Summary/Keyword: Coal Syngas

Search Result 108, Processing Time 0.023 seconds

Dynamic Modeling of Gasification Reactions in Entrained Coal Gasifier (석탄 가스화 반응의 동적 거동 전산 모사)

  • Chi, Jun-Hwa;Oh, Min;Kim, Si-Moon;Kim, Mi-Young;Lee, Joong-Won;Kim, Ui-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.386-401
    • /
    • 2011
  • Mathematical models for various steps in coal gasification reactions were developed and applied to investigate the effects of operation parameters on dynamic behavior of gasification process. Chemical reactions considered in these models were pyrolysis, volatile combustion, water shift reaction, steam-methane reformation, and char gasification. Kinetics of heterogeneous reactions between char and gaseous agents was based on Random pore model. Momentum balance and Stokes' law were used to estimate the residence time of solid particles (char) in an up-flow reactor. The effects of operation parameters on syngas composition, reaction temperature, carbon conversion were verified. Parameters considered here for this purpose were $O_2$-to-coal mass ratio, pressure of reactor, composition of coal, diameter of char particle. On the basis of these parametric studies some quantitative parameter-response relationships were established from both dynamic and steady-state point of view. Without depending on steady state approximation, the present model can describe both transient and long-time limit behavior of the gasification system and accordingly serve as a proto-type dynamic simulator of coal gasification process. Incorporation of heat transfer through heterogenous boundaries, slag formation and steam generation is under progress and additional refinement of mathematical models to reflect the actual design of commercial gasifiers will be made in the near futureK.

The Process Simulation of Entrained Flow Coal Gasification in Dynamic State for 300MW IGCC (300MW급 IGCC를 위한 건식 분류층 석탄 가스화 공정의 동적 상태 모사)

  • Kim, Mi-Yeong;Joo, Yong-Jin;Choi, In-Kyu;Lee, Joong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.460-469
    • /
    • 2010
  • To develop coal gasfication system, many studies have been actively conducted to describe the simulation of steady state. Now, it is necessary to study the gasification system not only in steady state but also in dynamic state to elucidate abnormal condition such as start-up, shut-down, disturbance, and develop control logic. In this study, a model was proposed with process simulation in dynamic state being conducted using a chemical process simulation tool, where a heat and mass transfer model in the gasifier is incorporated, The proposed model was verified by comparison of the results of the simulation with those available from NETL (National Energy Technology Laboratory) report under steady state condition. The simulation results were that the coal gas efficiency was 80.7%, gas thermal efficiency was 95.4%, which indicated the error was under 1 %. Also, the compositions of syngas were similar to those of the NETL report. Controlled variables of the proposed model was verified by increasing oxygen flow rate to gasifier in order to validate the dynamic state of the system. As a result, trends of major process variables were resonable when oxygen flow rate increased by 5% from the steady state value. Coal flow rate to gasifier and quench gas flow rate were increased, and flow rate of liquid slag was also increased. The proposed model in this study is able to be used for the prediction of gasification of various coals and dynamic analysis of coal gasification.

SNG Production characteristics of various coal type and gasifier (석탄 종류 및 가스화기 종류별 SNG 생산 특성)

  • Kim, Suhyun;Yoo, Youngdon;Kim, Jinho;Koh, Dongjun;Baik, Joonhyun;Byun, Changdae;Lim, Hyojun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.72-72
    • /
    • 2011
  • 국내 및 세계의 천연가스 수요가 증가하고, 원유가 상승에 의한 천연가스의 지속적인 가격상승이 예측됨에 따라 천연가스의 99%를 수입에 의존하는 우리나라의 에너지 안보 확보 방안을 위한 기술개발이 필요하다. 국내에서 천연가스를 확보할 수 있는 현실적인 방법중의 하나는 석탄가스화를 통해 얻어진 합성가스를 이용하여 SNG(synthetic Natural Gas, 합성천연가스)를 제조하는 것이다. 본 연구에서는 다양한 석탄, 다양한 석탄 가스화기를 적용하는 경우에 대한 CASE별 공정해석을 수행하여 각 경우의 SNG 생산 특성을 파악하였다. 석탄의 종류는 역청탄, 아역청탄, 갈탄을 대상으로 하였으며, 역청탄을 사용하는 경우는 General Electric Energy(GEE), Shell Global Solutions(Shell), ConocoPhillips(CoP)사의 가스화기를, 아역청탄을 사용하는 경우는 KBR의 TRIG$^{TM}$, Siemens사의 SFG, Shell, CoP 가스화기를, 갈탄을 사용하는 경우는 Shell, Siemens 가스화기를 적용하였다. 사용한 석탄과 석탄가스화기에서 발생된 합성가스 조성은 NETL에서 발행된 보고서에 제시된 수치들을 활용하였다. 역청탄을 사용하고 CoP 가스화기를 적용한 경우, SNG 합성공정에 유입되는 유량이 100 Nm3/h 일 때, 생산되는 SNG의 조성은 $CH_4$ 96.26%, $H_2$ 1.49%, $CO_2$ 0.69%, CO 0.004% 이고 생산유량은 24 Nm3/h 였다. SNG 효율을 SNG 합성공정에 공급되는 합성가스 열량 대비 최종 생산되는 SNG의 열량을 기준으로 하고, 각 CASE 별 SNG 효율을 살펴보면, 역청탄을 대상으로 한 경우 GEE 74.05%, CoP 76.65%였다. 아역청탄을 대상으로 한 경우 TRIG 78.14%, Siemens 71.22%, CoP 75.72%였고, 갈탄을 대상으로 하는 경우 Shell 71.48%, Siemens 71.49%였다. 역청탄을 사용하는 경우는 CoP 가스화기를 대상으로 한 경우 SNG 효율 및 생산량이 가장 높았고, 아역청탄을 사용하는 경우는 TRIG 가스화기를 대상으로 한 경우의 SNG 효율 및 생산량이 높았다. 갈탄을 사용하는 경우는 Shell 가스화기와 Siemens 가스화기가 거의 비슷한 결과를 나타내었다. $$SNG\;efficiency({\eta})={\frac{Q_B}{Q_A}}={\frac{Q_{SNG}(kcal/h)}{Q_{Syngas}(kcal/h)}}{\times}100(%)$$.

  • PDF

Numerical and Experimental Study on the Coal Reaction in an Entrained Flow Gasifier (습식분류층 석탄가스화기 수치해석 및 실험적 연구)

  • Kim, Hey-Suk;Choi, Seung-Hee;Hwang, Min-Jung;Song, Woo-Young;Shin, Mi-Soo;Jang, Dong-Soon;Yun, Sang-June;Choi, Young-Chan;Lee, Gae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-174
    • /
    • 2010
  • The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with the harmonic mean approach for turbulent reaction. Further Lagrangian approach in particle trajectory is adopted with the consideration of turbulent effect caused by the non-linearity of drag force, etc. The program developed is successfully evaluated against experimental data such as profiles of temperature and gaseous species concentration together with the cold gas efficiency. Further intensive investigation has been made in terms of the size distribution of pulverized coal particle, the slurry concentration, and the design parameters of gasifier. These parameters considered in this study are compared and evaluated each other through the calculated syngas production rate and cold gas efficiency, appearing to directly affect gasification performance. Considering the complexity of entrained coal gasification, even if the results of this study looks physically reasonable and consistent in parametric study, more efforts of elaborating modeling together with the systematic evaluation against experimental data are necessary for the development of an reliable design tool using CFD method.

Review on the water-gas shift process for a coal SNG project (석탄 SNG 생산설비의 수성가스전환 공정 분석)

  • Kim, Youngdo;Shin, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF

A Kinetic Study of Steam Gasification of Rice Straw, Saw Dust Biomass and Coal (볏집, 톱밥 바이오매스와 석탄의 수증기 가스화반응 Kinetics 연구)

  • Song, Byungho;Zhu, Xueyan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • Biomass and coal are great potential energy sources for gasification process. These solids can be gasified to produce syngas and bio-oil which can be upgraded further to transportation fuel. Two biomass and three coals have been gasified with steam in a thermobalance reactor under atmospheric pressure in order to evaluate their kinetic rate information The effects of gasification temperature ($600{\sim}850^{\circ}C$) and partial pressure of steam (30~90 kPa) on the gasification rate have been investigated. The three different types of gas-solids reaction models have been applied to the experimental data to compare their predictions of reaction behavior. The modified volumetric reaction model predicts the conversion data well, thus that model was used to evaluate kinetic parameters in this study. The gasification reactivity of five solids has been compared. The obtained activation energy of coal and biomass gasification were well in the reasonable range. The expression of apparent reaction rates for steam gasification of five solids have been proposed as basic information for the design of coal gasification processes.

Comparison of Quench Methods in The Coal Gasification System with Carbon Capture (CO2 포집을 포함한 석탄 가스화 시스템에서 급냉 방법에 따른 비교)

  • Lee, Joong-Won;Kim, Ui-Sik;Ko, Kyung-Ho;Chung, Jae-Hwa;Hong, Jin-Pyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • The integrated gasification combined cycle (IGCC) system is well known for its high efficiency compared with that of other coal fueled power generation system. IGCC offers substantial advantages over pulverized coal combustion when carbon capture and storage (CCS) is required. Commercial plants employ different types of quenching system to meet the purpose of the system. Depending on that, the downstream units of IGCC can be modeled using different operating conditions and units. In case with $CO_2$ separation and capture, the gasifier product must be converted to hydrogen-rich syngas using Water Gas Shift (WGS) reaction. In most WGS processes, the water gas shift reactor is the biggest and heaviest component because the reaction is relatively slow compared to the other reactions and is inhibited at higher temperatures by thermodynamics. In this study, tehchno-econimic assessments were found according to the quench types and operating conditions in the WGS system. These results can improve the efficiency and reduce the cost of coal gasification.

Characteristics and Modeling Analysis of Entrained Flow Gasifiers (분류층 가스화기 특징 및 공정모사 분석)

  • Yoo, Jeongseok;Kim, Youseok;Paek, Minsu
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.20-28
    • /
    • 2013
  • The gasification process has developed to convert coal into the more useful energy and material since decades. Despite the numberous design of ones, entrained flow gasifier of the major companies has had an advantage on the market. Because it has a merit of full-scale and high performance plant. In this paper, the gasification technologies of GE energy, Phillips, Siemens and Shell have been reviewed to compare their characteristics and a high performance gasification process was suggested. And the simulation model of gasifiers using Aspen Plus offered the quantitative comparison data for difference designs. The simulation results revealed the poor performance of the slurry feed than dry design. The corresponding cold gas efficiency of 77% is much lower than the 80.3% for the dry feed cases. The exergy analysis of the difference syngas quenching system showed that chemical quenching is superior to another. The results of analysis recommend the two stage gasifier with dry multi-feeder as the energy effective design.

An Experimental Study on the Ambient and High Pressure Combustion Characteristics of Gas Turbine for IGCC (석탄가스화 복합발전용 가스터빈의 상압 및 고압연소특성에 관한 실험적 연구)

  • Lee, Min-Chul;Seo, Seok-Bin;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.685-693
    • /
    • 2011
  • In the era of energy climate, IGCC technology is one of the powerful solutions for the demands of new energy with low carbon green growth. The present study is conducted to investigate the combustion characteristics of syngas from the coal gasifier to predict problems when it is fed to the gas turbine. Through high and low combustion tests, we understood that hydrogen is the main reason of NOx emission but easily controled by injecting the dilution of nitrogen. CO emission of syngas was comparable with that of methane and pressure fluctuation of syngas was not significant. The data from this study will be used for the optimization of combustion in the Korea first IGCC plant in 2015.

  • PDF

Analysis of the Influence of CO2 Capture on the Performance of IGCC Plants (가스화 복합화력발전 플랜트에서 CO2제거가 성능에 미치는 영향 해석)

  • Cha, Kyu-Sang;Kim, Young-Sik;Lee, Jong-Jun;Kim, Tong-Seop;Sohn, Jeong-L.;Joo, Yong-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • In the power generation industry, various efforts are needed to cope with tightening regulation on carbon dioxide emission. Integrated gasification combined cycle (IGCC) is a relatively environmentally friendly power generation method using coal. Moreover, pre-combustion $CO_2$ capture is possible in the IGCC system. Therefore, much effort is being made to develop advanced IGCC systems. However, removal of $CO_2$ prior to the gas turbine may affect the system performance and operation because the fuel flow, which is supplied to the gas turbine, is reduced in comparison with normal IGCC plants. This study predicts, through a parametric analysis, system performances of both an IGCC plant using normal syngas and a plant with $CO_2$ capture. Performance characteristics are compared and influence of $CO_2$ capture is discussed. By removing $CO_2$ from the syngas, the heating value of the fuel increases, and thus the required fuel flow to the gas turbine is reduced. The resulting reduction in turbine flow lowers the compressor pressure ratio, which alleviates the compressor surge problem. The performance of the bottoming cycle is not influenced much.