• Title/Summary/Keyword: Coal Syngas

Search Result 108, Processing Time 0.021 seconds

Potential of Coal Gasification Slag as an Alkali-activated Cement (석탄가스화 복합발전 슬래그의 알칼리 활성 시멘트로서의 가능성)

  • Kim, Byoungkwan;Lee, Sujeong;Chon, Chul-Min;Choi, Hong-Shik
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.38-47
    • /
    • 2018
  • Integrated gasification combined cycle (IGCC) is a next generation energy production technology that converts coal into syngas with enhanced power generation efficiency and environmental performance. IGCC produces almost coal gasification slag as the solid by-product. IGCC slag is generated about 140,000 tons for a year although recycling of it is still in the early stages. We evaluated the potential of IGCC slag which is generated from a pilot plant in South Korea as an alkali-activated cement. Samples which were activated with the combined activator of sodium silicate solution and caustic soda had an average compressive strength of 4.5 MPa, showing expansion. Expansion of the alkali-activated slag was presumed to be caused by free CaO in the slag, although it was not detected by the ethylene glycol method. Samples that were activated with the combined activator of sodium aluminate and caustic soda had an average compressive strength of 10 MPa. Hydroxy sodalite and $C_3AH_6$ were found to be the new crystalline phases. IGCC slag can be used as an alkali-activated material, but the strength performance should be improved with proper mix design approach to calculate optimum proportions which can alleviate the expansion issue at the same time.

Screening test of commercial catalysts for direct synthesis of Dimethyl ether from syngas produced using coal and waste (석탄 및 폐기물로부터 생산된 합성가스로부터 Dimethyl ether의 직접합성을 위한 상용촉매 스크린테스트)

  • Kim, Eun-Jin;Han, Gi-Bo;Park, No-Kuk;Ryu, Si-Ok;Lee, Tae-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.689-692
    • /
    • 2005
  • 2020년까지 전 세계 수송에너지의 수요가 현재의 2배까지 증가할 것으로 예상되면서 석유 자원의 안정적 공급이 어려워지기 이전에 이를 대체할 수 있는 에너지원 개발이 시급하다. 이러한 노력의 일환으로 최근 들어 대두되고 있는 가스화용융 기술은 석탄 폐기물 등으로부터 합성가스를 생산하는 고청정 고효율 기술이다. 여기에서 생산되는 합성가스는 천연가스를 대체하여 전기 및 화학원료를 생산하기 위한 원료로 이용 가능하다. 폐기물로부터 가스화용융기술을 통하여 생산되는 합성가스로부터 DME(dimethyl ether)를 생산할 수 있다. 가스화용융기술로부터 생산되는 합성가스는 자체의 일산화탄소와 수소의 조성비가 DME를 합성하는데 적당하다고 알려져 있다. DME는 에너지원의 다원화와 대기오염 물질의 저감, 지구온난화 대응 등과 아울러 제 4세대 수송 연료로 부각되고 있다. DME를 합성하는 방법은 합성가스로부터 메탄올의 합성 단계를 거친 후 DME를 합성하는 간접법과 단일단계의 반응에서 합성가스로부터 직접적으로 DME를 합성하는 직접법이 있다. 현재는 화학 평형적 측면 경제적 측면에서 이점을 가지고 있는 직접법에 관한 연구가 활발히 이루어지고 있다. DME 직접합성법에서는 메탄올 합성 촉매와 메탄올 탈수촉매의 물리적 혼합에 의한 혼성촉매가 주로 이용되고 있는 것으로 알려져 있다 본 연구에서는 일산화탄소와 수소로 이루어진 합성 가스로부터 직접 DME를 생산할 수 있는 직접 합성 공정에 적용 가능한 고효율 촉매 기술을 개발하기 위해 상용촉매의 스크린 테스트를 수행하였다. 상용촉매로는 sud-chemi사에서 메탄을 합성 촉매와 탈수촉매를 각각 구입하였으며, 이들 촉매를 원하는 조성비로 물리적으로 혼합한 다음 반응온도 ($250-290^{\circ}C$) 압력 (30-50 atm), $H_2$/CO 몰비 (0.5-2.0) 등의 다양한 반응조건 하에서 스크린 테스트를 수행하였다.대장조영영상을 얻을 수 있어 대장암의 위치에 관한 정보를 삼차원적으로 제공하므로 대장암의 성상을 정확히 알 수 있는데 도움을 주었다.요인은 없는 것으로 사료된다. 이 중 2예의 CT에서 선상 혹은망상형의 음영을 보였다. 결론: 유방암 환자의 방사선 치료 후 CT 소견은 방사선 치료의 방법에 따라 폐첨부 혹은 폐의전면 흉막하 부위에 선상 혹은 망상형의 음영으로서 방사선 폐렴 혹은 섬유화 소견이다. CT는 단순 흉부 촬영보다 이상 소견의 발견이 쉽다.이러한 소견은 후에 합병될 수 있는 다른 폐질환의 감별 진단에 도움이 될 것으로 보인다.moembolization via the radial artery approach were involved in this study. All underwent Allen’s test to check ulnar arterial patency. In all cases, we used the radial approach hepatic artery (RHA) catheter designed by ourselves, evaluating t\ulcorner selec\ulcorneron ability of the hepatic artery using an RHA cathter, the number of punctures, the procedure time, and compression time at the puncture site as well as complications occurring during and after the procedure. Results: Except for three in which puncture failure, brachial artery variation or hepatic artery variation occurred, all procedures were successful. The mean number of punctures was 3.5, and the

  • PDF

The Effect of ZnO Content on the Performance of Spray-dried Zn-based Desulfurization Sorbent for H2 Cleanup (황화수소 정제용 아연계 분무건조 탈황제의 활성성분 함량 변경에 따른 물성 및 반응 특성)

  • Baek, Jeom In;Eom, Tae Hyoung;Lee, Joong Beom;Jegarl, Seong;Ryu, Chong Kul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.482-490
    • /
    • 2014
  • Gaseous sulfur compound such as $H_2S$ or COS in coal- or biomass-derived hot syngas can be purified by solid sorbents at high temperatures. In this study, we investigated the physical properties and reactivity of solid regenerable desulfurization sorbents with 37.2, 41.9, and 46.5wt% ZnO to look into the ZnO content effect. The sorbents were produced by spray-drying method to apply to a fluidized-bed process. Sulfidation and regeneration reaction were carried out using a thermogravimetric analyzer. Sorbent prepared with 46.5wt% ZnO had physical properties suitable for a fluidized-bed process applications such as spherical shape, sufficient mechanical strength and density, high porosity and surface area. It showed high sulfur sorption capacity of 10.4wt% (ZnO utilization of 57%) at reaction temperatures of 500 and $650^{\circ}C$ for sulfidation and regeneration, respectively. However, the sulfur sorption capacity and ZnO utilization were significantly reduced and dimple shape appeared when the ZnO content decreased to 37.2 and 41.9wt%. Sulfur sorption capacity and regenerability were improved as reaction temperature increased within the experimental temperatures used in this work. The reaction temperature zones of $1500{\sim}550^{\circ}C$ and $650{\sim}700^{\circ}C$ are recommended for sulfidation and regeneration, respectively, to lead best reaction performances of the ZnO-based spray-dried sorbents developed in this work.

Experimental Study on the Synthesis of Dimethyl Ether (디메틸에테르 합성 반응의 실험적 연구)

  • Choi, Chang Woo;Cho, Wonihl;Baek, Young Soon;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.125-131
    • /
    • 2006
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, biomass and spent plastic. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. Therefore, it is considered as an excellent substitute fuel for LPG, fuel cells, power plant, and especially diesel and is expected to be the alternative fuel by 2010. The experimental study of the direct synthesis of DME was investigated under various conditions over a temperature range of $220{\sim}280^{\circ}C$, syngas ratio 1.2~3.0. All experiments were carried out with a hybrid catalyst, composed of a methanol synthesis catalyst ($Cu/ZnO/Al_2O_3$) and a dehydration catalyst (${\gamma}-Al_2O_3$). The observed reaction rate follows qualitatively a Langmiur-Hinshellwood model as the reaction mechanism. Such a mechanism is considered with three reactions; methanol synthesis, methanol dehydration and water gas shift reaction. From a surface reaction with dissociative adsorption of hydrogen, methanol, and water, individual reaction rate was determined.

Reduction and Decomposition Characteristics of CaSO4 Based Oxygen Carrier Particles (CaSO4 기반 산소전달입자의 환원과 분해특성)

  • RYU, HOJUNG;KIM, HANA;LEE, DONGHO;JIN, GYOUNGTAE;BAEK, JEOMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.600-608
    • /
    • 2015
  • As a candidate for cheap oxygen carrier, $CaSO_4$ based oxygen carriers have been developing. However, research on reaction characteristics and side reaction of $CaSO_4$ based oxygen carrier is very limited. There are many possible reactions for main components of syngas from coal. In this study, we prepared three $CaSO_4$ based oxygen carriers ($CaSO_4$-$Fe_2O_3$/bentonite, $CaSO_4$-$K_2CO_3$/bentonite, $CaSO_4$-CaO/bentonite) and performed reduction tests by hydrogen. Cyclic reduction-oxidation tests up to $5^{th}$ cycle are also conducted using hydrogen as fuel. Reduction reactivity of those $CaSO_4$ based oxygen carriers were compared with that of NiO based oxygen carrier (OCN703-1100). Real weight change fractions of $CaSO_4$ based oxygen carriers were higher than theoretical oxyen transfer capacity and reactivity of these particles decreased with the number of cycle increased. To check possible side reaction of $CaSO_4$ based oxygen carriers, $CaSO_4$ decomposition tests were carried out and $SO_2$ was detected even at $700^{\circ}C$. Consequently, we could conclude that $CaSO_4$ based oxygen carriers decompose and release $SO_2$ and this reaction lead reactivity decay of $CaSO_4$ based oxygen carries.

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 2 : NOx/CO emission Characteristics, Temperature Characteristics and Flame Structures (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 2 : NOx/CO 배출특성, 온도특성, 화염구조)

  • Lee, Min Chul;Yoon, Jisu;Joo, Seong Pil;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.639-648
    • /
    • 2013
  • This paper describes on the NOx/CO emission characteristics, temperature characteristics and flame structures when firing coal derived synthetic gas especially for gases of Buggenum and Taean IGCC. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Nitrogen addition caused decrement in adiabatic flame temperature, thus resulting in the NOx reduction. At low heat input condition, nitrogen dilution raised the CO emission dramatically due to incomplete combustion. These NOx reduction and CO arising phenomena were observed at certain flame temperature of $1500^{\circ}C$ and $1250^{\circ}C$, respectively. As increasing nitrogen dilution, adiabatic flame temperature and combustor liner temperature were decreased and singular points were detected due to change in flame structure such as flame lifting. From the results, the effect of nitrogen dilution on the NOx/CO and flame structure was examined, and the test data will be utilized as a reference to achieve optimal operating condition of the Taean IGCC demonstration plant.

A Kinetic Study of Steam Gasification of Woodchip, Sawdust and Lignite (나무칩, 톱밥 바이오매스와 갈탄의 수증기 가스화반응 특성 연구)

  • Kim, Kyungwook;Bungay, Vergel C.;Song, Byungho;Choi, Youngtai;Lee, Jeungwoo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.506-512
    • /
    • 2013
  • Biomass and low-grade coals are known to be better potential sources of energy compared to crude oil and natural gas since these materials are readily available and found to have large reserves, respectively. Gasification of these carbonaceous materials produced syngas for chemical synthesis and power generation. Woodchip, sawdust and lignite were gasified with steam in a thermobalance reactor under atmospheric pressure in order to evaluate their kinetic rate information. The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (20~90 kPa) on the gasification rate were investigated. The three different types of gas-solid reaction models were applied to the experimental data to predict the behavior of the gasification reactions. The modified volumetric model predicted the conversion data well, thus the model was used to evaluate kinetic parameters in this study. The observed activation energy of biomass, sawdust and lignite gasification reactions were found to be in reasonable range and their rank was found to be sawdust > woodchip > lignite. The expression of apparent reaction rates for steam gasification of the three solids was proposed to provide basic information on the design of coal gasification processes.