• Title/Summary/Keyword: CoV

Search Result 4,106, Processing Time 0.04 seconds

Antiviral Efficacy of Pralatrexate against SARS-CoV-2

  • Bae, Joon-Yong;Lee, Gee Eun;Park, Heedo;Cho, Juyoung;Kim, Jeonghun;Lee, Jungmin;Kim, Kisoon;Kim, Jin Il;Park, Man-Seong
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.268-272
    • /
    • 2021
  • Novel coronavirus (SARS-CoV-2) has caused more than 100 million confirmed cases of human infectious disease (COVID-19) since December 2019 to paralyze our global community. However, only limited access has been allowed to COVID-19 vaccines and antiviral treatment options. Here, we report the efficacy of the anticancer drug pralatrexate against SARS-CoV-2. In Vero and human lung epithelial Calu-3 cells, pralatrexate reduced viral RNA copies of SARS-CoV-2 without detectable cytotoxicity, and viral replication was successfully inhibited in a dose-dependent manner. In a time-to-addition assay, pralatrexate treatment at almost half a day after infection also exhibited inhibitory effects on the replication of SARS-CoV-2 in Calu-3 cells. Taken together, these results suggest the potential of pralatrexate as a drug repurposing COVID-19 remedy.

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Acute viral lower respiratory tract infections in children (소아 급성 바이러스 하기도염)

  • Park, Joon Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.3
    • /
    • pp.269-276
    • /
    • 2009
  • Viruses are the most common cause of lower respiratory tract infections (LRTIs) in infants and young children and are a major public health problem in this age group. Viruses were identified in 54.9-70.4% of hospitalized infants and children with LRTIs in Korea. The viral pathogens identified included respiratory syncytial virus (RSV) A and RSV B, influenza (Inf) A, Inf B, parainfluenza (PIV)1, PIV2, human bocavirus (hBoV), human rhinovirus (hRV), adenovirus (ADV), human metapneumovirus (hMPV), human coronavirus (hCoV)-OC 43, hCoV-229E, hCoV-NL63, hCoV-HKU1, and human enterovirus (hEV). Coinfections with ${\geq}$2 viruses were observed in 11.5-22.8% of children. The occurrence of LRTIs was the highest in the first year of life. The specific viruses are frequently associated with specific clinical syndromes of LRTIs. LRTIs caused by RSV were predominant among younger infants. hRV accounted for a larger proportion of LRTIs in young infants than ADV and hBoV. hMPV was frequently detected in children >24 months old. The number of hMPV infections peaked between February and May, whereas hRV was detected throughout the year. Thus far, hCoV is a less common respiratory pathogen in cases of ALRI and URI in Korean children.

Carbon Monoxide as a Novel Central Pyrogenic Mediator

  • Jang, Choon-Gon;Lee, Seung-Jin;Yang, Sang-In;Kim, Jin-Hak;Sohn, Uy-Dong;Lee, Seok-Yong
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2002
  • Carbon monoxide (CO) are produced by heme oxygenase (HO), and HO was detected in hypothalamus. However, the roles of CO produced in hypothalamus was not fully elucidated. So, we tested the effects of CO on body temperature because preoptic-anterior hypothalamus was known as the presumptive primary fever-producing site. CO-saturated aCSF ($4{\;}{\mu}l$, i.c.v.) and hemin ($10{\;}{\mu}g$, i.c.v.) elicited marked febrile response. Pretreatment with indomethacin completely inhibited CO- and hemin-induced fever. Zinc protoporphyrin-IX ($10{\;}{\mu}g$, i.c.v.) or ODQ ($50{\;}{\mu}g$, i.c.v.) partially reduced hemin-induced febrile response. Dibutyryl-cGMP ($100{\;}{\mu}g$, i.c.v.) produced profound febrile response and this febrile response was attenuated by indomethacin. These results indicate that endogenous CO may have a role as a pyrogenic mediator in CNS and CO-mediated pyresis is dependent on prostaglandin production and partially on activation of soluble guanylate cyclase.

Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations

  • Chang M. Kang;Seung-Tae Jung;Seong-Hwan Pyo;Youjung Seo;Won-Gu Kang;Jin-Kyu Kim;Young-Chang Nho;Jong-Seok Park;Jae-Hak Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4678-4684
    • /
    • 2023
  • Using the Monte Carlo method, the impact of the angular distribution of the electron source on the dose distribution for the 2.5 MeV ELV electron accelerator was explored. The experiment measured the 3-D dose distribution in the irradiation chamber for electron energies of 1.0 MeV and 2.5 MeV. The simulation used the MCNP6.2 code to evaluate three angular distribution models of the source: a mono-directional beam, a cone shape, and a triangular shape. Of the three models, the triangular shape with angles θ = 30°, φ = 0° best represents the angle of the scan hood through which the electron beam exits. The MCNP6.2 simulation results demonstrated that the triangular model is the most accurate representation of the angular distribution of the electron source for the 2.5 MeV ELV electron accelerator.

Nitrous oxide and carbon dioxide efflux of cropland soil during fallow season (휴경기간 녹비재배 농경지 토양에서 아산화질소 및 이산화탄소 배출특성)

  • Lee, Sun-Il;Kim, Gun-Yeob;Choi, Eun-Jung;Lee, Jong-Sik;Jeong, Hyun-Cheol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.386-396
    • /
    • 2018
  • Cropland is sources of atmospheric nitrous oxide ($N_2O$) and carbon dioxide ($CO_2$). However, the contribution of the fallow season to emission of these gases has rarely been determined. In this study, a field experiment encompassing three treatments was conducted to determine efflux of $N_2O$ and $CO_2$ in cropland during fallow season. The treatments were hairy vetch (H.V.), rye and control (Con.). The H.V. and rye were sown in middle October and early November, respectively. The soil $N_2O$ efflux among all three treatments in the fallow season (November-April) were $0.014-2.956mg\;N_2O\;m^{-2}{\cdot}d^{-1}$. The cumulative $N_2O$ emissions were $104.4mg\;N_2O\;m^{-2}$ for Con., $85.8mg\;N_2O\;m^{-2}$ for H.V. and $85.0mg\;N_2O\;m^{-2}$ for Rye during the fallow season. The highest $N_2O$ emissions occurred in Con., while H.V. and Rye emissions were similar. Cumulative $CO_2$ emissions were $293.1g\;CO_2\;m^{-2}$ for Con., $242.2g\;CO_2\;m^{-2}$ for H.V., $275.2g\;CO_2\;m^{-2}$ for Rye during fallow season. This study showed that soil $N_2O$ and $CO_2$ average daily emission during fallow season were 28.3% and 27.4%, respectively of the growing season. Our results indicate that $CO_2$ and $N_2O$ emissions from agricultural systems continue throughout the fallow season.

Adsorption Characteristics of Carbon Dioxide on Chitosan/Zeolite Composites (키토산/제올라이트 복합체의 이산화탄소 흡착 특성)

  • Hong, Woong-Gil;Hwang, Kyung-Jun;Jeong, Gyeong-Won;Yoon, Soon-Do;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, chitosan/zeolite composites were prepared by using basalt-based zeolite impregnated with aqueous chitosan solution for the adsorptive separation of CO2. The prepared composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption analysis. In addition, the adsorption equilibrium isotherms for CO2 and N2 were measured at 298 K using a volumetric adsorption system, and the results were analyzed by applying adsorption isotherm equations (Langmuir, Freundlich, and Sips) and energy distribution function. It was found that CO2 adsorption capacities were well correlated with the structural characteristics of chitosan and zeolite, and the ratio of elements [N/C, Al/(Si + Al)] formed on the surface of the composite. Moreover, the CO2/N2 adsorption selectivity was calculated under the mixture conditions of 15 V : 85 V, 50 V : 50 V, and 85 V : 15 V using the Langmuir equation and the ideal adsorption solution theory (IAST).

Adsorbed Carbon Formation and Carbon Hydrogenation for CO2 Methanation on the Ni(111) Surface: ASED-MO Study

  • Choe, Sang-Joon;Kang, Hae-Jin;Kim, Su-Jin;Park, Sung-Bae;Park, Dong-Ho;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1682-1688
    • /
    • 2005
  • Using the ASED-MO (Atom Superposition and Electron Delocalization-Molecular Orbital) theory, we investigated carbon formation and carbon hydrogenation for $CO_2$ methanation on the Ni (111) surface. For carbon formation mechanism, we calculated the following activation energies, 1.27 eV for $CO_2$ dissociation, 2.97 eV for the CO, 1.93 eV for 2CO dissociation, respectively. For carbon methanation mechanism, we also calculated the following activation energies, 0.72 eV for methylidyne, 0.52 eV for methylene and 0.50 eV for methane, respectively. We found that the calculated activation energy of CO dissociation is higher than that of 2CO dissociation on the clean surface and base on these results that the CO dissociation step are the ratedetermining of the process. The C-H bond lengths of $CH_4$ the intermediate complex are 1.21 $\AA$, 1.31 $\AA$ for the C${\cdot}{\cdot}{\cdot}H_{(1)}$, and 2.82 $\AA$ for the height, with angles of 105${^{\circ}}$ for ∠ $H_{(1)}$CH and 98${^{\circ}}$ for $H_{(1)} CH _{(1)}$.

I-V Characteristics of Epitaxial $CoSi_2$-contacted p+/n Junctions (Epitaxial $CoSi_2$접촉 p+/n 접합의 I-V 특성)

  • 구본철;김시중;김주연;배규식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.908-913
    • /
    • 2000
  • CoSi$_2$/p+/n diodes(bilayer diodes) were fabricated by using epitaxial CoSi$_2$grown from Co/Ti bilayer as a diffusion source. The I-V characteristics of p+/n diodes were measured and compared with those of diode made from Co monolayer (monolayer diode). Monolayer diodes showed typical p+n junction characteristics with the leakage current of as low as 10$^{-12}$ A and forward current 6-orders higher than the leakage current, when drive-in annealed at 90$0^{\circ}C$ for 20 sec.. On the other hand, bilayer diodes showed the Schottky-like behaviors with forward currents rather higher than those of monolyer diodes, but with too high leakage currents, when drive-in annealed at $700^{\circ}C$ or higher. However, when the annealing temperature was lowered to $700^{\circ}C$ and annealing time was increased to 60 sec., the leakage current was reduced to 10$^{-11}$ A and thus sho3wed typical diode characteristics. The high leakage currents for diodes annealed at $700^{\circ}C$ or higher was attributed to Shannon contacts formed due to unremoved Co-Ti-Si precipitates. But when annealed at 50$0^{\circ}C$, B ions diffused in the direction of the surface layer, and thus the leakage currents were reduced by removing Shannon contacts.

  • PDF

Preparation of Cellulose Nanoparticles Loaded with Retinyl Palmitate (레티닐 팔미테이트가 봉입된 셀룰로오스 나노입자의 제조)

  • Lee, Jeong-Soon;Ma, Sang-Chol;Kang, Ki-Choon;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.175-181
    • /
    • 2008
  • Cellolose nanoparticles loaded with retinyl palmitate were prepared by modified spontaneous emulsification solvent diffusion method. We used polysorbate 20, polysorbate 60, and PPG-26-Buteth-26/PEG-40 Hydrogenated castor oil as dispersion medium. The optimum condition for particle size of cellulose nanoparticles was 1w/v% ethyl cellulose with, 3w/v% polysorbate 60 solution. And The optimum condition for leading amount of retinyl palmitate of cellulose nanoparticles was 2w/v% ethyl cellulose with 1w/v% polysorbate 60 solution. Also, we found that this optimum condition can be applicable to other active compounds.