• 제목/요약/키워드: CoQ10

검색결과 606건 처리시간 0.037초

Quadrant Analysis in Correlation between Mechanical and Electrical Properties of Low-Temperature Conductive Film Bonded Crystalline Silicon Solar Cells

  • Baek, Su-Wung;Choi, Kwang-Il;Lee, Woo-Hyoung;Lee, Suk-Ho;Cheon, Chan-Hyuk;Hong, Seung-Min;Lee, Kil-Song;Shin, Hyun-Woo;Yan, Yeon-Won;Lim, Cheolhyun
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.1-4
    • /
    • 2015
  • In this study, we analyzed the correlation between mechanical and electrical properties of low-temperature conductive film (LT-CF) bonded silicon solar cells by a quadrant analysis (horizontal axis (peeling strength), vertical axis (power loss)). We found that a series of points with various bonding parameters such as bonding temperature, pressure and time were distributed in the different three regimes; weak regime (Q2: weak bonding strength and high power loss), moderate regime (Q4 : strong bonding strength and low power loss) and hard regime (Q3 : weak bonding strength and low power loss). Using this analogous technique, it was possible to fabricate the LT-CF bonded silicon solar cells with the various conditions displayed in Q3 of the quadrant plots, possessing the peeling strength of ~ 1N/mm and power loss of 2~3%.

Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화 (Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor)

  • 손민기;성호진;이제근
    • 한국연소학회지
    • /
    • 제18권2호
    • /
    • pp.17-22
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화 (Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor)

  • 손민기;성호진;이제근
    • 한국연소학회지
    • /
    • 제18권3호
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

Co90Fe10/SiO2 Multilayer를 이용한 GHz 자성박막 인덕터 설계 및 제작에 관한 연구 (A Study on the Design and Fabrication of GHz Magnetic Thin Film Inductor Utilizing Co90Fe10/SiO2 Multilayer)

  • 공기준;윤의중;진현준;박노경;문대철
    • 한국통신학회논문지
    • /
    • 제25권5B호
    • /
    • pp.985-991
    • /
    • 2000
  • 본 논문에서는 인덕터의 면적을 극소화시키고 인덕턴스와 Q값을 극대화시키기 위한 최적구조의 2GHz 자성박막 인덕터를 설계하고 제작하였다. Eddy-current 표피효과를 위해서 Co90Fe10와 SiO2의 multilayer를 사용하고, multilayer를 적용한 새로운 lumped 소자모델을 고려하여 최적설계를 수행하였다. 2GHz에서 동작하는 새로운 자성박막 인덕터는 photo-lithography와 lift-off기술을 이용하여 Si 기판위에 제작되었다. 50개 이상의 동일한 인덕터들의 주파수 특성은 RF Impedance Analyzer로, 자기공진주파수는 Vector Network 분석기(HP8510)로 측정되었다. 개발된 인덕터들은 1.8~2.3GHz 범위의 자기공진주파수, 47~68nH 범위의 L값, 그리고 1GHz이상의 주파수에서 70~80정도의 Q값을 가지므로 L과 Q가 극대화된 아주 우수한 최적구조의 소형(면적=30.8$\times$30.8mil2) 박막인덕터가 성공적으로 제작되었다.

  • PDF

Dynamic Respiratory Measurements of Corynebacterium glutamicum using Membrane Mass Spectormetry

  • Wittmann.Christoph;Yang, Tae-Hoon;Irene Kochems;Elmar Heinzle
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.40-49
    • /
    • 2001
  • The present work presents a novel approach for the dynamic quantification of respiration rates on a small scale by using lysine-producing Corynebacterium glutamicum ATCC 21253. Cells sampeld from batch cultures at different times were incubated ina 12-ml scale bioreactor equipped with a membrane mass spectrometer. Under dynamic conditions, gas exchange across the gas-liquid phase, specific respiration rates, and RQ values were precisely measured. For this purpose, suitable mass balances were formulated. The transport coefficients for $O_2$ and $CO_2$, crucial for calculating the respiration activity, were determined as $k_La_{O2}=9.18h^{-1}$ and $k_La_{CO2}=5.10h^{-1}$ at 400 rpm. The application of the proposed method to batch cultures of C. glutamicum ATCC 21253 revealed the maximum specific respiration rates of $q_{O2}=8.4\;mmol\;g^{-1}h^{-1}\;and\;q_{CO2}=8.7\;mmol\;g^{-1}h^{-1}$ in the middle of the exponential growth phase after 5 h of cultivation. When the cells changed from growth to lysine production due to the depletion of the essential amino acids theonine, methionine, and leucine, $q_{O2}\;and\;q_{CO2}$ decreased significantly and RQ increased. The respiration data exhibited an excellent agreement with previous cultivations of the strain [13]. This confirms the potential of the developed approach to realistically reflect the metabolic activities of cells at their point of sampling. The short-term influence of added threonine, methionine, and leucine was highest during the shift from growth to lysine production, where $q_{O2}\;and\;q_{CO2}$ increased 50% within one minute after the pulse addition of these compounds. Non-growing, yet lysine-producing cells taken from the end of the batch cultivation revealed no metabolic stimulation with the addition of threonine, methionine, and leucine.

  • PDF

핵융합 배가스 중 수소 회수를 위한 촉매반응 특성 연구 (Study on the Characteristics of Catalyst Reaction for Hydrogen Recovery from Nuclear Fusion Exhaust Gas)

  • 정우찬;정필갑;김정원;문흥만
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.402-408
    • /
    • 2015
  • In D-T fusion reaction, $D_2$ (duterium) and $T_2$(tritium) are used as fuel gas. The exhaust gas of nuclear fusion includes hydrogen isotopes $Q_2$ (Q means H, D or T), tritiated components ($CQ_4$ and $Q_2O$), CO, $CO_2$, etc. All of hydrogen isotopes should be recovered before released to the atmosphere. This study focused on the recovery of hydrogen isotopes from $CQ_4$ and $Q_2O$. Two kinds of experiments were conducted to investigate the catalytic reaction characteristics of SMR (Steam Methane Reforming) and WGS (Water Gas Shift) reactions using Pt catalyst. First test was performed to convert $CH_4$ into $H_2$ using 6% $CH_4$, 6% CO/Ar feed gas. In the other test, 100% CO gas was used to convert $H_2O$ into $H_2$ at various reaction conditions (reaction temperature, S/C ratio, GHSV). As a result of the first test, $CH_4$ and CO conversion were 41.6%, 57.8% respectively at $600^{\circ}C$, S/C ratio 3, GHSV $2000hr^{-1}$. And CO conversion was 72% at $400^{\circ}C$, S/C ratio 0.95, GHSV $333hr^{-1}$ in the second test.

기후변화 환경에서의 낙엽성 참나무 6종의 발아와 초기 생장 (Impact of Germination and Initial Growth of Deciduous Six Oak Species under Climate Change Environment Condition)

  • 정헌모;김해란;유영한
    • 생태와환경
    • /
    • 제54권4호
    • /
    • pp.334-345
    • /
    • 2021
  • 우리나라 산림 생태계의 주요 우점종인 낙엽성 참나무 6종의 지구온난화에 의한 초기 생장의 영향을 파악하기 위하여, 야외 (대조구)와 대조구보다 온도 (3.0℃ 상승)와 CO2 농도 (2배 상승)를 증가시킨 기후변화처리구에 종자를 파종하고 2주 간격으로 발아 및 초기 생장을 측정하였다. 그 결과 6종 참나무 유식물들의 지상부와 지하부 출현시기는 대조구보다 기후변화처리구에서 모든 종이 더 빨랐다. 잎 출현시기는 기후변화처리구에서 굴참나무, 신갈나무 그리고 졸참나무가 빨랐다. 지하부 길이는 기후변화 처리구에서 굴참나무, 신갈나무 그리고 떡갈나무가 길었고 상수리나무는 구배 간 차이가 없었으며 갈참나무와 졸참나무는 짧았다. 지상부 길이는 기후변화처리구에서 졸참나무가 길었고, 상수리나무, 신갈나무 그리고 떡갈나무는 차이가 없었으며 갈참나무는 짧았다. 이상의 결과는 지구온난화 환경에서 지상부와 잎의 출현시기가 빠르고 지하부 생장이 좋은 신갈나무의 초기 생장이 가장 유리함을 나타내었다. 반면, 기후변화처리환경에서 지상부와 지하부의 생장이 가장 낮은 갈참나무는 다른 참나무에 비하여 생육이 불리하였다. 또한 상수리나무는 지구온난화 환경에 따른 초기 생장의 차이가 적어 가장 영향이 적은 나무로 판단된다.

Hologram and Receptor-Guided 3D QSAR Analysis of Anilinobipyridine JNK3 Inhibitors

  • Chung, Jae-Yoon;Cho, Art-E;Hah, Jung-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2739-2748
    • /
    • 2009
  • Hologram and three dimensional quantitative structure activity relationship (3D QSAR) studies for a series of anilinobipyridine JNK3 inhibitors were performed using various alignment-based comparative molecular field analysis (COMFA) and comparative molecular similarity indices analysis (CoMSIA). The in vitro JNK3 inhibitory activity exhibited a strong correlation with steric and electrostatic factors of the molecules. Using four different types of alignments, the best model was selected based on the statistical significance of CoMFA ($q_2\;=\;0.728,\;r_2\;=\;0.865$), CoMSIA ($q_2\;=\;0.706,\;r_2\;=\;0.960$) and Hologram QSAR (HQSAR: $q_2\;=\;0.838,\;r_2\;=\;0.935$). The graphical analysis of produced CoMFA and CoMSIA contour maps in the active site indicated that steric and electrostatic interactions with key residues are crucial for potency and selectivity of JNK3 inhibitors. The HQSAR analysis showed a similar qualitative conclusion. We believe these findings could be utilized for further development of more potent and selective JNK3 inhibitors.

Enhancement of Carbon Dioxide Fixation by Alteration of Illumination during Chlorella Vulgaris-Buitenzorg's Growth

  • Wijanarko Anondho;Dianursanti Dianursanti;Gozan Misri;Andika Sang Made Krisna;Widiastuti Paramita;Hermansyah Heri;Witarto Arief Budi;Asami Kazuhiro;Soemantojo Roekmijati Widaningroem;Ohtaguchi Kazuhisa;Koo Song-Seung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.484-488
    • /
    • 2006
  • Alteration of illumination with optimum carbon dioxide fixation-based curve in this research successfully enhanced the $CO_{2}-fixation\;(q_CO_{2}$ capability of Chlorella vulgaris Buitenzorg cultivated in a bubble column photo bioreactor. The level of $CO_{2}$ fixation was up to 1.91 times that observed from cultivation with intensification of illumination on an optimum growth-based curve. During 144 h of cultivation, alteration of light intensity on an optimum $CO_{2}-fixation-based$ curve produced a $q_CO_{2}$ of $12.8\;h^{-1}$. Meanwhile, alteration of light intensity with a growth-based curve only produced a $q_CO_{2}$ of $6.68\;h^{-1}$. Increases in light intensity based on a curve of optimum $CO_{2}-fixation$ produced a final cell concentration of about 5.78 g/L. Both cultivation methods were carried out under ambient pressure at a temperature of $29^{\circ}C$ with a superficial gas velocity of $2.4\;m/h(U_{G}$. Cells were grown on Beneck medium in a 1.0 L Bubble Column Photo bioreactor illuminated by a Phillips Halogen Lamp (20 W/12 V/50 Hz). The inlet gas had a carbon dioxide content of 10%.