• Title/Summary/Keyword: CoMn Oxide

Search Result 190, Processing Time 0.032 seconds

Characteristics of Electrical Resistance in System Mn-Co-Ni-Fe oxide for Thermistor with various Compositions (서미스터용 Mn-Co-Ni-Fe계 산화물의 조성에 따른 전기저항특성)

  • Kim, Yeong-Min;Im, Jae-Seok;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.63-72
    • /
    • 2004
  • The properties of electrical resistance of Mn-Co-Ni-Fe oxide-based thermistor with various Fe contents in sintering process at $1200^{\circ}$ to $1400^{\circ}C$ for 4 hours in air atmosphere for fabricating thermistor materials were investigated. The results were as follows: all samples showed single cubic spinel crystal structures in all region. The electrical conductivity is the highest thermistor sintered at $1300^{\circ}C$ for 4 hours. In general when the Fe content is increased except F-2, the resistivity increases and relatively the conductivity decreases. Particularly F-2 composition exhibited the highest electrical conductivity (1.4${\times}$$10^-3$${\textohm}cm) and relatively low B constant(2906K)

  • PDF

Supercapacitive Properties of a Hybrid Capacitor Consisting of Co-Mn Oxide Cathode and Activated Carbon Anode (코발트망간 산화물 양전극과 활성탄 음전극으로 구성된 초고용량 커패시터 특성)

  • Kim, Yong Il;Yoon, Je Kook;Kown, Je Sung;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.440-443
    • /
    • 2010
  • A hybrid supercapacitor consisting of Co-Mn oxide as a cathode, activated carbon as an anode, and 6 M KOH as a electrolyte was fabricated and its supercapacitor performance was investigated by means of cyclic voltammetry. The prepared supercapacitor showed the specific capacitance of 67.3 F/g, energy density of 18.3 Wh/kg, and power density of 237.7 kW/kg, respectively. It means that the supercapacitor can be used for the practical applications.

Fabrication and Electrical Properties of Ni-Mn-Co-Fe Oxide Thick Film NTC Thermistors (Ni-Mn-Co-Fe 산화물 후막 NTC 서미스터의 제조 및 전기적 특성)

  • Park, Kyeong-Soon;Bang, Dae-Young;Yun, Sung-Jin;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.912-918
    • /
    • 2002
  • Ni-Mn-Co-Fe oxide thick films were coated on an alumina substrate by screening printing technique. The microstructure and electrical properties of the thick films, as a function of composition and sintering temperature, were investigated. The components of the NTC thick films sintered at 1150${\circ}C$ were distributed homogeneously. On the other hand, in the case of the NTC thick films sintered at 1200 and 1250${\circ}C$, Co element was distributed homogeneously, but Ni, Mn and Fe elements were distributed heterogeneously, resulting in the formation of Ni rich and Mn-Fe rich regions. All the thick film NTC thermistors prepared showed a linear relationship between log resistance (log R) and the reciprocal of absolute temperature (1/T), indicative of NTC characteristics. At a given NiO and $Mn_3O_4$ content, the resistance, B constant and activation energy of $(Ni_{1.0}Mn_{1.0}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) and $(Ni_{0.75}Mn_{1.25}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) thermistors increased with increasing $Fe_2O_3$ content.

Effect of Co Dopant on the (La, Sr)$MnO_3$ Cathode for Solid Oxide Fuel Cell (고체산화물 연료전지용 (La, Sr)$MnO_3$ 양극에 대한 Co 첨가효과)

  • 김재동;김구대;이기태
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.612-616
    • /
    • 2000
  • The effect of Co dopant on the (La, Sr)MnO3 cathode was investigated. La2Zr2O7 and SrZrO3 were formed as the reaction products between YSZ and LSMC. The reactivity of LSMC with YSZ increased with increasing Co content. However, the cathodic polarization resistance decreased with increasing Co doping. Therefore, doping Co at Mn site in the (La, Sr)MnO3 cathode was effective on controlling the polarization resistance of the cathode. The polarization property of LSMC-YSZ composite(60 wt%: 40 wt%) cathode was better than that of LSMC single cathode.

  • PDF

Synthesis of Li1.6[MnM]1.6O4 (M=Cu, Ni, Co, Fe) and Their Physicochemical Properties as a New Precursor for Lithium Adsorbent (Li1.6[MnM]1.6O4(M=Cu, Ni, Co, Fe)의 합성 및 리튬 흡착제용 신규 전구체로서의 물리화학적 성질)

  • Kim, Yang-Soo;Moon, Won-Jin;Jeong, Soon-Ki;Won, Dae-Hee;Lee, Sang-Ro;Kim, Byoung-Gyu;Chung, Kang-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4660-4665
    • /
    • 2011
  • New precursors as a Li adsorbent, $Li_{1.6}(MnM)_{1.6}O_4$ (M=Cu, Ni, Co, Fe), were synthesized by hydrothermal method and their physicochemical properties were discussed. XRD and HRTEM results revealed that the original spinel structure was stabilized by cobalt-doping while Cu-, Ni- and Fe-doping led to structural changes. Such a structural stabilization by Cobalt-doping was maintained after lithium leaching by acid treatment. Li absorption efficiency from seawater was significantly enhanced by using the Cobalt-doped spinel manganese oxide, $Li_{1.6}[MnCo]_{1.6}O_4$, compared to the commercially available $Li_{1.33}Mn_{1.67}O_4$; the adsorbed amount of Li from 1g-adsorbent was 35 and 16 mg by $Li_{1.6}[MnCo]_{1.6}O_4$, and $Li_{1.33}Mn_{1.67}O_4$, respectively.

Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC) (중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF

Study on the Manufacturing Process of Complex Oxide by Co-Roasting Process and Magnetic Properties Mn-Zn Ferrite (분무 배소법에 의한 복합산화물의 제조공정 및 Mn-Zn ferrite의 자기 특성에 관한연구)

  • 유재근;이경익;이성수
    • Resources Recycling
    • /
    • v.8 no.4
    • /
    • pp.45-56
    • /
    • 1999
  • The purpose of tlus sludy was to preparc raw material powder for Mn-Zn iclrile, h m mined mill scale and fero-Mn, usins a co-spray roasting process The mill scale and ferra-Mn uscd in this raalins process was rcf~nedb y mesn-ns of a slxc~apl rxcss ~nvolvinm~a te~ialsc ontalning imp~u-ltleso r less than 100 pprn In this study an effeclive spray roaster system. wllich produces fme complex oxide powder, collects produccd ~owder.,m d prcvel~tse ~~llssiooifi HCI gas. was also manufactured. By means of spray~ngp urifcd raw malerial solu~lionl nln a manufacued high tcmpervture rumace. &-ferrite powder and a comnpleu o ~ d e powder of Fe,O; and M,x203 were manufactured. The chmcterlstics of the composllion. surface urca, and p'miicle size dismbulion or the produced powder were exmined. ptoduced powdcr was then ~ m e dwi tli ZnO powder. aid olher addilives of defined cornposnion, and Mn-Zn femite cares werc praiuccil by meuns of Sorlning and closely controlled sintering processes. The magpelic p~oprlieso f c olo~ss, initlal permeability. mauin~u~mnn agnehc flux. coz~civcr orcc and residual magnccic flux for the above cores we,= measured, and fmm Il~ase I-csulls the eflicacy of lhe co-spray roasling pncess to pl.ellare raw material powder lor Mn-Zn ferntc was established

  • PDF

The Manganese Oxide which has Modified Electrochemically Affects in Oxygen Reduction Reaction (전기화학적으로 석출된 망간 산화물이 산소 환원 반응에 미치는 영향)

  • Park, Sung-Ho;Shin, Hyun-Soo;Kim, Jeong-Sik;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • This study is concerned the electrocatalytic generation of oxygen gas at electrochemically deposited manganese oxide electrode in KOH solution. Manganese oxide nanoparticles electrodeposited onto relatively substrate, e.g glassy carbon, Au, Ti electrode. MnOx is electrodeposited in nanorod structure which cover the overall surface of the substrate. The $\gamma$-MnOOH that is kind of manganese oxide species plays a significant role as a catalytic mediator, which promote 4-electron reduction process. Modified electrodes with electrodeposited manganese oxide structures resulted in significant decrease in the anodic polarization compared with the unmodified electrodes in alkaline media.

CoMn Oxide/Carbon-nanofiber Composite Electrodes for Supercapacitors (코발트망간 산화물/탄소나노섬유 복합전극의 수퍼케폐시터 특성)

  • Kim, Yong-Il;Yoon, Yu-Il;Ko, Jang-Myoun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.493-496
    • /
    • 2008
  • Composite electrodes consisting of $CoMnO_2$ and carbon nanofibers(vapor grown carbon nanofiber, VGCF) with high electrical conducivity($CoMnO_2$/VGCF) were prepared on a porous nickel foam substrate as a current collector and their supercapacitive properties were investigated using cyclic voltammetry in 1 M KOH aqueous solution. The $CoMnO_2$/VGCF electrode exhibited high specific capacitance value of 630 F/g at 5 mV/s and excellent capacitance retention of 95% after $10^4$ cycles, indicating that the used VGCF played the important roles in reducing the interfacial resistance in the composite electrode to improve supercapacitive performance.