DOI QR코드

DOI QR Code

The Manganese Oxide which has Modified Electrochemically Affects in Oxygen Reduction Reaction

전기화학적으로 석출된 망간 산화물이 산소 환원 반응에 미치는 영향

  • Received : 2010.04.06
  • Accepted : 2010.04.12
  • Published : 2010.05.31

Abstract

This study is concerned the electrocatalytic generation of oxygen gas at electrochemically deposited manganese oxide electrode in KOH solution. Manganese oxide nanoparticles electrodeposited onto relatively substrate, e.g glassy carbon, Au, Ti electrode. MnOx is electrodeposited in nanorod structure which cover the overall surface of the substrate. The $\gamma$-MnOOH that is kind of manganese oxide species plays a significant role as a catalytic mediator, which promote 4-electron reduction process. Modified electrodes with electrodeposited manganese oxide structures resulted in significant decrease in the anodic polarization compared with the unmodified electrodes in alkaline media.

본 연구는 KOH 전해질에서 전기화학적으로 석출된 망간 산화물이 산소 환원 반응에 미치는 전기화학적 촉매 역할에 대해 고찰하였다. 나노 사이즈 망간 산화물들은 Glassy carbon(GC), Gold(Au) 그리고 Titanium(Ti)로 이루어진 전극에 전해방식으로 석출시켰으며, 각 전극 표면에 나노 사이즈로 균일하게 분포되어 있는 것이 SEM 관찰을 통해서 확인되었다. 망간산화물의 한 종류인 $\gamma$-MnOOH는 산소 환원반응에 수반되는 4-electron 반응에서 촉매 역할을 하는 것을 확인하였다. 망간산화물이 전기화학적으로 석출된 전극들은 전해석출을 하지 않은 전극들에 비해서 양극 전위가 낮아지는 것을 확인할 수 있었다.

Keywords

References

  1. M. S. El-Deab, T. Sotomura, and T. Ohsaka, ‘Oxygen reduction at electrochemically deposited crystallographically oriented Au(001)-like gold canaparticles’ Electrochem. Commun., 7, 29 (2005). https://doi.org/10.1016/j.elecom.2004.10.010
  2. M. R. Miah and T. Ohsaka, ‘Kinetics of oxygen reduction at tin-adatoms-modified gold electrodes in acidic media‘ Electrochim. Acta, 54, 5871 (2009). https://doi.org/10.1016/j.electacta.2009.05.045
  3. J. J. Whalen III, J. D. Weiland, and P. C. Searson, ‘Electrochemial Deposition of platinum from Aqueous Ammonium Hexachloroplatinate Solution’ J. Electrochem. Soc., 152, (11) C738 (2005). https://doi.org/10.1149/1.2047407
  4. A. M. Mohammad, M. I. Awad, M. S. El-Deab, T. Okajima, and T. Ohsaka, ‘Electrocatalysis by nanoparticles: Optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modifed electrodes’ Electrochim. Acta, 53, 4351 (2008). https://doi.org/10.1016/j.electacta.2008.01.081
  5. M. S. El-Deab, M. I. Awad, A. M. Mohammad, and T. Ohsaka, ‘Enhanced water electrolysis: Electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes‘ Electrochem. Commun., 9, 2082 (2007). https://doi.org/10.1016/j.elecom.2007.06.011
  6. S. Chou, F. Cheng, and J. Chen, ‘Electrodeposition synthesis and electrochemical properties of nanostructured -$MnO_2$ films’ J. Power Sources., 162, 727 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.033
  7. F. H. B. Lima, M. L. Calegaro, and E. A. Ticianelli, ‘Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media’ J. Electroanal. Chem,. 590, 152 (2009).
  8. Z. Rogulski, H. Siwek, I. Paleska, and A. Czerwinski, ‘Electrochemical behavior of manganese dioxide on a gold electrode’ J. Electroanal. Chem., 543, 175 (2003). https://doi.org/10.1016/S0022-0728(03)00045-7
  9. I. Roche and K. Scott, ‘Effect of pH and temperature on carbon-supported manganese oxide oxygen reduction electrocatalysts’ J. Electroanal. Chem., 638, 280 (2010). https://doi.org/10.1016/j.jelechem.2009.10.030
  10. S. Ardizzone, C. L. Bianchi, and D. Tirelli, ‘$Mn_3O_4$ and -MnOOH powders, preparation, phase composition and XPS characterisation’ Colloids Surf., A, 134, 305 (1998). https://doi.org/10.1016/S0927-7757(97)00219-7
  11. T. Ohsaka, L. Mao, K. Arihara, and T. Sotomura, ‘Bifunctional catalytic activity of manganese of alkaline air electrode’ Electrochem. Commun,. 6, 273 (2004). https://doi.org/10.1016/j.elecom.2004.01.007
  12. M. S. El-deab and T. Ohsaka, ‘Electrocatalysis by design:Effect of the loading level of Au nanoparticles-MnOX nanoparticles binary catalysts on the electrochemical reduction of mloecular oxygen’ Electrochim. Acta., 52, 2166 (2007). https://doi.org/10.1016/j.electacta.2006.08.041
  13. D. Zhang, D. Chi, T. Okajima, and T. Ohsaka, ‘Catalytic activity of dual catalysts based on nano-manganese oxide and cobalt octacyanophthanine toward four-electron reduction of oxygen in alkaline media’ Electrochim. Acta., 52, 5400 (2007). https://doi.org/10.1016/j.electacta.2007.02.060
  14. L. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba, and T. Ohsaka, ‘Electrocatalysis by nanoparticles: Optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modified electrodes’ Electrochim. Acta., 48, 1015 (2003). https://doi.org/10.1016/S0013-4686(02)00815-0
  15. Z. Yang, Y. Zhang, W. Zhang, X. Wnag, Y. Qian, X. Wen, and S. Yang, ‘Nanorods of manganese oxides: Synthesis, characterization and catalytic application’ J. Solid state Chem., 179, 679 (2006). https://doi.org/10.1016/j.jssc.2005.11.028