• Title/Summary/Keyword: CoM(Center of Mass)

Search Result 130, Processing Time 0.025 seconds

The Effect of Vit-D Supplementation on the Side Effect of BioNTech, Pfizer Vaccination and Immunoglobulin G Response Against SARS-CoV-2 in the Individuals Tested Positive for COVID-19: A Randomized Control Trial

  • Hawal Lateef Fateh;Goran Kareem;Shahab Rezaeian;Jalal Moludi;Negin Kamari
    • Clinical Nutrition Research
    • /
    • v.12 no.4
    • /
    • pp.269-282
    • /
    • 2023
  • Vitamin D participates in the biological function of the innate and adaptive immune system and inflammation. We aim to specify the effectiveness of the vitamin D supplementation on the side effects BioNTech, Pfizer vaccination, and immunoglobulin G response against severe acute respiratory syndrome coronavirus 2 in subjects tested positive for coronavirus disease 2019 (COVID-19). In this multi-center randomized clinical trial, 498 people tested positive for COVID-19 were divided into 2 groups, receiving vitamin D capsules or a placebo (1 capsule daily, each containing 600 IU of vitamin D) over 14-16 weeks. Anthropometric indices and biochemical parameters were measured before and after the second dose of vaccination. Fourteen to 16 weeks after supplementation, the intervention group had an immunoglobulin G (IgG) increase of 10.89 ± 1.2 g/L, while the control group had 8.89 ± 1.3 g/L, and the difference was significant between both groups (p = 0.001). After the second dose of vaccination, the supplement group significantly increased their 25-hydroxy vitamin D from initially 28.73 ± 15.6 ng/mL and increased to 46.48 ± 27.2 ng/mL, and the difference between them was significant. Those with a higher body mass index (BMI) had the most of symptoms, and the difference of side effects according to BMI level was significantly different. In 8 weeks after supplementation obese participants had the lowest IgG levels than overweight or normal subjects. The proportion of all types of side effects on the second dose was significantly diminished compared with the first dose in the intervention group. Supplementation of 600 IU of vitamin D3 can reduce post-vaccination side effects and increase IgG levels in participants who received BioNTech, Pfizer vaccine.

Identification and Characterization of a Novel Antioxidant Peptide from Bovine Skim Milk Fermented by Lactococcus lactis SL6

  • Kim, Sang Hoon;Lee, Ji Yoon;Balolong, Marilen P.;Kim, Jin-Eung;Paik, Hyun-Dong;Kang, Dae-Kyung
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.402-409
    • /
    • 2017
  • A novel peptide having free radical scavenging activity was separated, using an on-line high-performance liquid chromatography (HPLC) - ABTS screening method, from bovine skim milk fermented by Lactococcus lactis SL6 (KCTC 11865BP). It was further purified using reverse phase-HPLC (RP-HPLC) and sequenced by RP-HPLC-tandem mass spectrometry. The amino acid sequence of the identified peptide was determined to be Phe-Ser-Asp-Ile-Pro-Asn-Pro-Ile-Gly-Ser-Glu-Asn-Ser-Glu-Lys-Thr-Thr-Met-Pro-Leu-Trp (2,362 Da), which is corresponding to the C-terminal fragment of bovine ${\alpha}_{s1}$-casein (f179-199). The hydroxyl radicals scavenging activity ($IC_{50}$ $28.25{\pm}0.96{\mu}M$) of the peptide chemically synthesized based on the MS/MS data showed a slightly lower than that of the natural antioxidant Trolox ($IC_{50}$ $15.37{\pm}0.52{\mu}M$). Furthermore, derivatives of the antioxidant peptide were synthesized. The antioxidative activity of the derivatives whose all three proline residues replaced by alanine significantly decreased, whereas replacement of two proline residues in N-terminal region did not affect its antioxidative activity, indicating that $3^{rd}$ proline in C-terminal region is critical for the antioxidative activity of the peptide identified in this study. In addition, N-terminal region of the antioxidant peptide did not show its activity, whereas C-terminal region maintained antioxidative activity, suggesting that C-terminal region of the peptide is important for antioxidative activity.

Anti-Obesity and Hypolipidemic Effects of Dietary Levan in High Fat Diet-Induced Obese Rats

  • Kang, Soon-Ah;Hong, Kyung-Hee;Jang, Ki-Hyo;Kim, So-Hye;Lee, Kyung-Hee;Chang, Byung-Il;Kim, Chul-Ho;Choue, Ryo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.796-804
    • /
    • 2004
  • We found previously that dietary high fat caused obesity, and levan supplementation to the regular diet reduced adiposity and serum lipids. In the present study, we examined the effects of levan [high-molecular-mass $\beta$-(2,6)-linked fructose polymer] supplement on the development of obesity and lipid metabolism in rats fed with high-fat diet. Thus, to determine whether the dietary levan may have the anti-obesity and hypolipidemic effects, 4-wk-old Sprague Dawley male rats were fed with high-fat diet for 6 wk to induce obesity, and subsequently fed with 0, 1, 5, or 10% levan supplemented high-fat diets (w/w) for another 4 wk. For the comparison, a normal control group was fed with AIN-76A diet. Supplementation with levan resulted in a significant reduction of high-fat-induced body weight gain, white fat (i.e., epididymal, visceral, and peritoneal fat) development, adipocyte hypertrophy, and the development of hyperinsulinemia and hyperlipidemia in a dose-dependent manner. Serum triglyceride and free fatty acid levels were greatly reduced by levan supplementation. Serum total cholesterol level was reduced, whereas the HDL cholesterol level was increased by dietary levan. The expression of uncoupling protein (UCP) was increased by dietary high fat, and was further induced by levan supplementation. The mRNA level of UCP1, 2, and 3 in brown adipose tissue (BAT) and UCP3 in skeletal muscle was upregulated in rats fed with dietary levan. In conclusion, upregulated UCP mRNA expression may contribute to suppression of development of obesity through increased energy expenditure. The present results suggest that levan supplementation to the diet is beneficial in suppressing diet-induced obesity and hyperlipidemia.

The Qualitative Rate Estimation of PAHs in Carbon Compounds of Particles in Vehicles Exhaust Gas (자동차 배기가스 중 입자상 탄소성분 내 PAHs의 정성적 비율 추정)

  • Kim, Jong Bum;Lee, Kyoung Bin;Kim, Jin Sik;Kim, Chang Hwan;Cha, Yong Ho;Kwon, Soon Bark;Bae, Gwi Nam;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2014
  • Since the emergence of domestically produced automobiles in 1964, the number of automobiles in circulation in South Korea has increased constantly. With this rapidly increasing number of automobiles, automobile-induced environmental pollution has become an issue of great concern, especially with regard to air pollution. Of the carbon composites contained in automobile exhaust gas, PAHs are known to be carcinogenic and highly deleterious to humans and thus need to be urgently mitigated. To address this issue of PAHs, this study was conducted to estimate qualitative of particulate PAHs contained in carbon composites in automobile exhaust gas, by capturing all particulate matter discharged from the latter. To allow for differentiated analyses, the automobiles investigated were divided into 4 groups: gasoline vehicle, motocycle, diesel vehicle, and LPG vehicle. Samples were analyzed using two methods. First, in-depth analysis was performed on organic carbon (OC) and elemental carbon (EC) composites with analysis parameters, using the Thermal Optical Transmittance Method (NIOSH 5040). Second, for the examination of particulate PAHs, GC/MSD was used to analyze the 16 PAH species specified by the Environmental Protection Agency (EPA). The analyses yielded the findings that diesel vehicles had the highest mass concentration ($2,007{\mu}g/m^3$), followed by motocycle ($1,066{\mu}g/m^3$), LPG vehicle ($392{\mu}g/m^3$), and gasoline vehicles ($270{\mu}g/m^3$). The highest carbon concentrations in total particulate matter by vehicle weight were produced from LPG vehicle (79.8%), followed by gasoline vehicle (77.4%), motocycle (69.8%), and diesel vehicle (59.1%).

Survey of nitroso-compounds level derived from additives in metal-working fluids (유통 수용성 금속가공유 중 니트로 화합물 함유 실태)

  • Yang, Jeong Sun;Choi, Jin Hee;Choi, Seong Bong;Lee, Jong Han
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.268-278
    • /
    • 2007
  • Nitrite which can be derived from water for dilution of metal working fluid can induce nitroso compounds which can be classified as carcinogen, if it co-exists with ethanolamines added for pH control in metal working fluid. The survey of nitrite, nitrate and nitroso-compounds level in 42 metal-working fluids collected from 17 factories was done by ion chromatography and gas chromatography with mass detector. Diluted metal working fluid showed higher level of nitrite and nitrate compared with raw fluid. Nitrite was detected in 11 (52%) samples among 21 diluted solution. Three (14%) samples showed over German recommendation level ($20{\mu}g/mL$).N-nitrosodiethanolamine(NDELA) was detected in 18 samples among 21 diluted solution. Seven (33%) samples showed over German recommendation level ($5{\mu}g/mL$). The concentration of NDELA was correlated with nitrite ion ($R^2=0.453$, n=19).

Efficient Anti-Tumor Immunotherapy Using Tumor Epitope-Coated Biodegradable Nanoparticles Combined With Polyinosinic-Polycytidylic Acid and an Anti-PD1 Monoclonal Antibody

  • Sang-Hyun Kim;Ji-Hyun Park;Sun-Jae Lee;Hee-Sung Lee;Jae-Kyung Jung;Young-Ran Lee;Hyun-Il Cho;Jeong-Ki Kim;Kyungjae Kim;Chan-Su Park;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.42.1-42.20
    • /
    • 2022
  • Vaccination with tumor peptide epitopes associated with MHC class I molecules is an attractive approach directed at inducing tumor-specific CTLs. However, challenges remain in improving the therapeutic efficacy of peptide epitope vaccines, including the low immunogenicity of peptide epitopes and insufficient stimulation of innate immune components in vivo. To overcome this, we aimed to develop and test an innovative strategy that elicits potent CTL responses against tumor epitopes. The essential feature of this strategy is vaccination using tumor epitope-loaded nanoparticles (NPs) in combination with polyinosinic-polycytidylic acid (poly-IC) and anti-PD1 mAb. Carboxylated NPs were prepared using poly(lactic-co-glycolic acid) and poly(ethylene/maleic anhydride), covalently conjugated with anti-H-2Kb mAbs, and then attached to H-2Kb molecules isolated from the tumor mass (H-2b). Native peptides associated with the H-2Kb molecules of H-2Kb-attached NPs were exchanged with tumor peptide epitopes. Tumor peptide epitope-loaded NPs efficiently induced tumor-specific CTLs when used to immunize tumor-bearing mice as well as normal mice. This activity of the NPs significantly was increased when co-administered with poly-IC. Accordingly, the NPs exerted significant anti-tumor effects in mice implanted with EG7-OVA thymoma or B16-F10 melanoma, and the anti-tumor activity of the NPs was significantly increased when applied in combination with poly-IC. The most potent anti-tumor activity was observed when the NPs were co-administered with both poly-IC and anti-PD1 mAb. Immunization with tumor epitope-loaded NPs in combination with poly-IC and anti-PD1 mAb in tumor-bearing mice can be a powerful means to induce tumor-specific CTLs with therapeutic anti-tumor activity.

FBR CFD Simulation of Steam Methanol Reforming Reaction using Intrinsic Kinetic Data of Copper-impregnated Hydrotalcite Catalyst (구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용한 메탄올 수증기 개질반응의 고정층 반응기 CFD 시뮬레이션)

  • Jae-hyeok Lee;Dongil Shin;Ho-Geun Ahn
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • Fixed-bed reactor Computational Fluid Dynamics (CFD) simulation of methanol steam reforming reaction was performed using the intrinsic kinetic data of the copper-impregnated hydrotalcite catalyst. The activation energy of the copper hydrotalcite catalyst obtained from the previous study results was 97.4 kJ/mol, and the pre-exponential was 5.904 × 1010. Process simulation was performed using the calculated values and showed a similar tendency to the experimental results. And the conversion rate according to the change of the reaction temperature (200 - 450 ℃) and the molar ratio of methanol and water was observed using the intrinsic kinetic data. In addition, mass and heat transfer phenomena analysis of a commercial reactor (I.D. 0.05 - 0.1m, Length 1m) was predicted through axial 2D Symmetry simulation using the power law model of the above kinetic constants.

Conceptual Design of 6U Micro-Satellite System for Optical Images of 3 m GSD (3 m급 광학영상 촬영을 위한 6U 초소형위성 시스템 개념설계)

  • Kim, Geuk-Nam;Park, Sang-Young;Kim, Gi-hwan;Park, Seung-Han;Song, Youngbum;Song, Sung Chan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.105-114
    • /
    • 2022
  • The purpose of this study was to present a conceptual design of the 6U micro-satellite system for optical image of 3 m GSD. An optical camera system with a payload of 3 m GSD image was designed and optimized. The optical system has a diameter of Ø78 mm, length 250 mm, and 1400 mm focal length. The requirement and constraints were configured for the 6U micro-satellite bus system with the payload. Satisfying the requirement and constraints, the subsystems of the 6U bus were designed such as attitude and orbit control, propulsion, command and data handling, electrical power, communication, structures and mechanisms, and thermal control subsystem. The mass budget, power budget, and communication link budget were also confirmed for the 6U micro-satellite comprising the optical payload and the subsystems of bus. To take optical images, a mission operation concept is proposed for the 6U micro-satellite in a low-Earth orbit. A constellation comprising many 6U micro-satellites studied in this paper, can provide with various data for reconnaissance and disaster tracking.

Heat Transfer Correlation to Predict the Evaporation of a Water Droplet in Superheated Steam during Reflood Phase of a LOCA

  • Kim, Yoo;Ban, Chang-Hwan
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.261-268
    • /
    • 2000
  • A heat transfer correlation to predict the vaporization of a water droplet in highly superheated steam during a loss-of-coolant accident(LOCA) of a nuclear power plant is provided. Vaporization of liquid fuel or water droplets in superheated air or steam and subsequent interface heat transfer between a liquid droplet and superheated gas is typically correlated by way of a Nusselt number as a function of Reynolds number, Prantl number, and in some cases including mass transfer number. Presently available correlations and experimental data of the evaporation of liquid droplets in air or steam are analyzed and a new Nusselt number correlation is proposed taking Schmidt number into consideration in order to account for binary diffusion of the vapor as well, Nu$\_$f/(1+B)$\^$0.7/=2+0.53Sc$\_$f/$\^$-1/5/Re$\_$M/$\^$$\sfrac{1}{2}$/Pr$\_$f/$\^$$\sfrac{1}{3}$/ for which properties are evaluated at film condition except the density of Reynolds number evaluated at ambient condition. Diverse correlations for various combinations of liquid and gas species are put into single equation. The blowing correction factor of (1+B)$\^$0.7/ is confirmed appropriate, and a criterion to distinguish so-called high- and low-temperature condition of ambient gas is set forth.

  • PDF

Antibody response to COVID-19 vaccination in patients on chronic hemodialysis

  • Heejung Choi;Sungdam Han;Ji Su Kim;Bumhee Park;Min-Jeong Lee;Gyu-Tae Shin;Heungsoo Kim;Kyongmin Kim;A-Young Park;Ho-Joon Shin;Inwhee Park
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.249-259
    • /
    • 2023
  • Purpose: Since patients on hemodialysis (HD) are known to be vulnerable to coronavirus disease 2019 (COVID-19), many studies were conducted regarding the effectiveness of the COVID-19 vaccine in HD patients in Western countries. Here, we assessed antibody response of HD patients for 6 months post-vaccination to identify the duration and effectiveness of the COVID-19 vaccine in the Asian population. Materials and Methods: We compared antibody response of the COVID-19 vaccine in HD patients with healthy volunteers. Patient and control groups had two doses of ChAdOx1 nCoV-19 and mRNA-1273, respectively. Immunoglobulin G (IgG) was measured before vaccination, 2 weeks after the first dose, 2 and 4 weeks, 3 and 6 months after the second dose. Neutralizing antibody was measured before vaccination and at 2 weeks, 3 and 6 months after second dose. Since the third dose was started in the middle of the study, we analyzed the effect of the third dose as well. Results: Although antibody production was weaker than the control group (n=22), the patient group (n=39) showed an increase in IgG and neutralizing antibody after two doses. And, 21/39 patients and 14/22 participants had a third dose (BNT162b2 or mRNA-1273 in the patient group, mRNA-1273 in the control group), and it did not affect antibody response in both group. Trend analysis showed IgG and neutralizing antibody did not decrease over time. Age, sex, and HD vintage did not affect antibody production in HD patients. Patients with higher body mass index displayed better seroresponse, while those on immunosuppressants showed poor seroresponse. Conclusion: Two doses of vaccination led to significant antibody response in HD patients, and the antibody did not wane until 6 months.