• Title/Summary/Keyword: CoCoA+

Search Result 51,612, Processing Time 0.074 seconds

Characteristics of Water Gas Shift and Membrane Process for Pre-combustion CO2 Capture (연소전 CO2 포집을 위한 수성가스반응과 분리막 공정 특성)

  • Kim, Jeong-Nam;You, Jong-Kyun;Choi, Soo-Hyun;Baek, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Global warming due to greenhouse gas emissions is considered as a major problem worldwide, and many countries are making great efforts to reduce carbon dioxide emissions. Many technologies in post-combustion, pre-combustion and oxy-fuel combustion $CO_2$ capture have been developed. Among them, a hybrid pre-combustion $CO_2$ capture system of a water gas shift (WGS) reactor and a membrane gas separation unit was investigated. The 2 stage WGS reactor integrated high temperature shift (HTS) with a low temperature shift (LTS) was used to obtain a higher CO conversion rate. A Pd/Cu dense metal membrane was used to separate $H_2$ from $CO_2$ selectively. The performance of the hybrid system in terms of CO conversion and $H_2$ separation was evaluated using a 65% CO, 30 % $H_2$ and 5% $CO_2$ gas mixture for applications to pre-combustion $CO_2$ capture. The experiments were carried out over the range of WGS temperatures ($200-400^{\circ}C$), WGS pressures (0-20bar), Steam/Carbon (S/C) ratios (2.5-5) in a feed gas flow rate of 1 L/min. A very high CO conversion rate of 99.5% was achieved with the HTS-LTS 2 stage water gas shift reactor, and 83% $CO_2$ was concentrated in the retentate using the Pd/Cu membrane.

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2 (대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응)

  • Oh, Soonja;Son, In-Chang;Wi, Seung Hwan;Song, Eun Young;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.

Properties of Hexaferrite Co2Y(Ba2Co2Fe12O22) Prepared by Coprecipitation Method (공침법에 의해 제조된 육방정 산화철 Co2Y(Ba2Co2Fe12O22)의 특성)

  • 신형섭;이상걸;권순주
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.195-201
    • /
    • 1992
  • It had been studied the structure and the magnetic properties of singel phase Co2Y(Ba2Co2Fe12O22) powder, one of the hexagonal ferrite. The material was successfully prepared by a commercially applicable coprecipitation method. Adding asqueous solution of BaCl2, CoCl2 and FeCl2(Ba2+:Co2+:Fe2+=1:1:6 in mole ratio) to a mixture of NaOH and hydrogen peroxide solution, coprecipitate was formed with rapid oxidation of ferrous to ferric ion. The coprecipitate transformed to single phase Co2Y powder at heat treatment temperatures as low as 900$^{\circ}C$. The shape of Co2Y particles obtained at 900$^{\circ}C$ was hexagonal plate-like (diameter∼$\mu\textrm{m}$, aspect ratio>10). The structure of the Co2Y was refined by a Rietveld analysis of the measured X-ray diffractogram. The lattice parameters are ao=5.8602${\AA}$ and co=43.512${\AA}$. Co2Y is a soft magnetic material with saturation magnetization 30 emu/g and coecivity 170 . A standard X-ray diffraction pattern for Co2Y is proposed as well.

  • PDF

A Density Dependent Study on YHB RDF of Gaseous CO Molecule (밀도변화에 따른 CO기체 분자으I YHB 동경분포함수에 대한 연구)

  • Yoon, Jong Ho;Kim, Hae Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.456-460
    • /
    • 1999
  • The YHB radial distribution functions of a linear gas molecule CO were calculated by a computer within the Stockmayer molecular potential molel, which assumed thc CO molecule as a simple dipolar molecule. To examine the validity of the obtained YHB radial distribution of CO gas molecule, the density dependent pressures of CO at several temperatures were also calculated. The calculated pressures showed a good agreement with literially known experimental CO pressure data. The temperatures examined were 273, 298, and 373 K and the densities were up to $0.013/{\AA}^3$ (maximum pressure = 1000 atm). Since the calculated pressures showed a good agreement with the experimental values, the obtained YHB radial distribution functions of CO molecule seemed good enough to obtain and predict various equilibrium physical and chemical quantities of CO molecule sensitive to density such as pressure. It was also found that in CO gas system the dipole-dipole interaction is effective up to approximately 2.5 molecular diameter.

  • PDF

Studies on The Electrochemical Properties of Oxygen adducts Tetradentate Schiff Base Cobalt(II) Complexes in DMSO (I) (DMSO용액에서 네자리 Schiff Base Cobalt(II) 착물들의 산소 첨가 생성물에 대한 전기화학적 성질에 관한 연구 (제 1 보))

  • Chjo Ki-Hyung;Jin-Soon Chung;Heui-Suk Ham;Seoing-Seob Seo
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.542-554
    • /
    • 1987
  • Tetradentate schiff base cobalt(II) complexes; Co(SED), Co(SND) and Co(SOPD) have been prepared, these complexes have react with dry oxygen in DMSO to form oxygen adducts cobalt(III) complexes; $[Co(SED)(DMSO)]_2O_2,\;[Co(SND)(DMSO)]_2O_2$ and $[Co(SOPD)(DMSO)]_2O_2$. It seems to be that the oxygen adducts cobalt(Ⅲ) complexes have heexa coordinated octahedral configration with tetradentate schiff base cobalt (III), DMSO and oxygen, and the mole ratio of oxygen to cobalt(II) complexes are 1 : 2, these complexes have been identified by IR-Spectra, T.G.A., magnetic susceptibilitis and elemental analysis of C.H.N. and Cobalt. The redox reaction process of Co(SED), Co(SND) and Co(SOPD) complexes was investigated by cyclic voltammetry with glassy carbon electrode in 0.1M TEAP-DMSO. The results of redox reaction process of Co(II) / Co(III) and Co(II) / Co(I) for cobalt(SED) and cobalt(SOPD) complexes and Co(II) / Co(III) process for cobalt(SND) complex are reversible process but Co(II) / Co(I) process of Cobalt(SND) complex is irreversible, and oxygen adduct complexes to quasi reversibly with oxygen should be very closed related to the redox potentials of range, $E_{pc}$ = -0.80~-0.89V and $E_{pa}$ = -0.70~-0.76V.

  • PDF

Two Crystal Structures of Fully Dehydrated $Ag_{12-2x}Co_x-A (x = 3 and 4.5)$ (완전히 탈수한 $Ag_{12-2x}Co_x-A$ (x = 3 및 4.5)의 결정구조)

  • Seung Hwan Song;Duk Soo Kim;Jong Yul Park;Un Sik Kim;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.520-527
    • /
    • 1988
  • The crystal structures of $Co^{2+}\;and\;Ag^+\;exchanged\;zeolite\; A,\; Ag_6Co_3$-A(a = 12.131(5)$\AA$) and $Ag_3Co_{4.5}$-A(a = 12.145(1)$\AA$), have been determined by single crystal X-ray diffraction techniques. Both structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}C$. Full-matrix leastsquares refinement converged to the final error indices of R1 = 0.045 and R2 = 0.041 for $Ag_3Co_{4.5}-A,\; and\; R1 = 0.066\; and\; R2 = 0.076\; for\; Ag_6Co_3$-A using the 258 and 189 reflections, respectively, for which I > 3$\sigma$(I). Both structures indicate that CO(Ⅱ)ions are coordinated by three framework oxygens; the Co(II) to O(3) distances are 2.118(4)$\AA$ for $Ag_3Co_{4.5}$-A and 2.106(1)$\AA$ for $Ag_6Co_3-A$, respectively. In each structure, the angle substended at Co(II), O(3)-Co(II)-O(3) is ca 120°, close to the idealized trigonalplanar value. $Co^{2+}$ ions prefer to 6-ring sites and $Ag^+$ ions prefer to 8-ring site when total number of cations is more than 8. The crystals of hydrated and dehydrated $Ag_{12-2x}Co_x-A (x > 4.5)$ had no crystalline diffraction pattern, indicating the apparent exchange limit of $Co^{2+}\; into\; Ag_{12}-A\; is\; 4.5 Co^{2+}$ ions per unit cell. $Co^{2+}$ ions hydrolyze $H_2O$ molecules and $H_3O^+$ concentraction is accumulating. These $H_3O^+$ ions destroy the zeolite structures.

  • PDF

A Study on Protein Adsorption-resistant Soft Contact Lens (단백질흡착을 막는 소프트콘택트렌즈에 관한 연구)

  • 조종수;정영일
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.291-296
    • /
    • 1996
  • Poly(ethylene glycol)(PEG) macromers terminated with diacrylate Iyoups and interpenetrating poly- mer networks(IPN) composed of poly(hydroxyethyl methacrylate)(PHEMA) or poly(hydroxyethyl methacrylate-co-hydronypropyl methacrylate-co- N-vinyl pyrrolidone ) [ P( HEM A-co- HPM A-co- NVP) ] and PEG macromer were synthesized with the aim of obtaining protein adsorption resistant soft contact lens. Polymerization of PEC macromer resulted in the formation of cross-linked gels due to the multifunctionality of macromer. Crosslinked P(HEMA) or P(HEMA-co-HPMA-co-WVP) chains were interpenetrated into the cross-linked three-dimensional networks of PEG. It was found that albumin adsorption onto the contact lens prepared by P(HEMA-co-HPMA-co-NVP) /PEG IPW decreases with an increase of molecular weight of PEG. Also, it was found that albumin adsorption onto the both contact lens decreases with an increase of concentration of PEC macromer in the IPN preparation. There are also more adequate in the bioinertnen for the contact lens by P(HEMA)/PEG IPN or P (HEMA-co-HPMA-co-NVP)/PEG IPN than that by P(HEMA) or P(HEMA-co-HPMA-co-NVP)

  • PDF

A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt (40 wt% Ni 촉매에서 바이오가스 중 CO2로부터 메탄제조에 관한 연구: Commercial Catalyst와의 특성 비교분석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.388-400
    • /
    • 2021
  • Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrogen with CO2. This study is an experimental study to produce CH4 by reacting CO2 of biogas with hydrogen using a 40 wt% Ni-Mg-Al catalyst and a commercial catalyst. Catalyst characteristics were analyzed through H2-TPR, XRD, and XPS instruments of 40% Ni catalyst and commercial catalyst. The effect on the CO2 conversion rate and CH4 selectivity was analyzed, and the activities of a 40% Ni catalyst and a commercial catalyst were compared. As a result of experiment, In the case of a 40 wt% catalyst, the maximum CO2 conversion rate showed 77% at the reaction temperature of 400℃. Meanwhile, the commercial catalyst showed a maximum CO2 conversion rate of 60% at 450℃. When 50% of CO was added to the CO2 methanation reaction, the CO2 conversion rate was increased by about 5%. This is considered to be due to the atmosphere in which the CO reaction can occur without the process of converting to CH4 after forming carbon and CO as intermediates in terms of the CO2 mechanism on the catalyst surface.

Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts (액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매)

  • Kim, Moon-Hyeon;Choo, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.