A Study on Protein Adsorption-resistant Soft Contact Lens

단백질흡착을 막는 소프트콘택트렌즈에 관한 연구

  • 조종수 (전남대 고분자공학과) ;
  • 정영일 (남대 고분자공학과, 순천대 고분자공학과, 조선대 약학대학)
  • Published : 1996.09.01

Abstract

Poly(ethylene glycol)(PEG) macromers terminated with diacrylate Iyoups and interpenetrating poly- mer networks(IPN) composed of poly(hydroxyethyl methacrylate)(PHEMA) or poly(hydroxyethyl methacrylate-co-hydronypropyl methacrylate-co- N-vinyl pyrrolidone ) [ P( HEM A-co- HPM A-co- NVP) ] and PEG macromer were synthesized with the aim of obtaining protein adsorption resistant soft contact lens. Polymerization of PEC macromer resulted in the formation of cross-linked gels due to the multifunctionality of macromer. Crosslinked P(HEMA) or P(HEMA-co-HPMA-co-WVP) chains were interpenetrated into the cross-linked three-dimensional networks of PEG. It was found that albumin adsorption onto the contact lens prepared by P(HEMA-co-HPMA-co-NVP) /PEG IPW decreases with an increase of molecular weight of PEG. Also, it was found that albumin adsorption onto the both contact lens decreases with an increase of concentration of PEC macromer in the IPN preparation. There are also more adequate in the bioinertnen for the contact lens by P(HEMA)/PEG IPN or P (HEMA-co-HPMA-co-NVP)/PEG IPN than that by P(HEMA) or P(HEMA-co-HPMA-co-NVP)

Keywords

References

  1. American Chemical Society Symposium Series v.31 In Hydrogels for medical and related applications D. Ratner;A.S. Hoffman;J.D. Andrade(ed.)
  2. J. Biomed. Mater. Res. v.7 S.D. Bruck
  3. Nature v.185 O. Wichterle;D. Lim
  4. European Polymer J. v.10 K. Kudela;A. Story;R. Urbanova
  5. Acta Histochem. v.9 G. Mohn
  6. U.S. Armed Forces Medical Journal v.11 R.H. Alder;C. Darby
  7. J. Biomed. Mater. Res. v.2 L.L. Markley;H.J. Bixler;R.A. Cross
  8. J. Biomed. Mater. Res. v.1 M. Barvic;K. Kliment;M. Zavadil
  9. J. Biomed. Mater. Res. v.8 J. Drobnik;P. Spacek;o. Wichterle
  10. Biomedical ENG. v.4 M.P. Singh
  11. J. Biomed. Mater. Res v.3 M. Tollar;M. Stol;K. Kliment
  12. J. Biomed. Mater. Res v.7 P. Spacek;M. Kubin
  13. Proc. Roy. Soc. Med. v.62 G.D. Winter
  14. Survey of Ophthalmology v.16 M.F. Refojo
  15. Brit. J. Phthal. v.57 L. Krejci;H. Krejcova
  16. J. Control. Rel. v.1 R.W. Korsmever;N.A, Peppas
  17. J. of KOSOMBE v.9 C.S. Cho;S.J. Chung;B.C. Kim
  18. 친수성 터폴리머, 대한민국물질특허 제8751호 김범철;조종수
  19. J. Am. Optom. Assoc. v.43 F.J. Holly;M.F. Refojo
  20. J. Biomed. Mater. Res. v.15 T. Okano;S. Nishiyama;I. Shinohara;T. Akaike;Y. Sakurai;K. Kataoka;T. Tsuruta
  21. Artif. Organs v.2 no.SUP. Y. Mori;S. Nagaoka;M. Itoga;H. Tanzawa;Y. Yamada;H. Watanabe;Y. Idezuki
  22. Macromolecules v.26 A. S. Sawhney;C.P. Pathak;J.A. Hubbell
  23. J. Biomater. Sci. Polym. Ed. v.5 E. W. Merrill
  24. 膜 v.8 K. Ishihara et al.
  25. In Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems Gradient surfaces as tools to study biocompatibility H. B. Lee;B. J. Jeong;J. H. Lee;N. Ogata(ed);S. W. Kim(ed);J. Feijen(ed);T. Okano(ed)
  26. ASAIO J. v.6 E. W. Merril;E. W. Salzman
  27. J. Biomed. Mater. Res. v.23 J. H. Lee;J. Kopececk;J. D. Andrade
  28. Creat. Chem. Acta. v.63 P. Stenius;J. Berg;P. Claesson ;C. G. Galander;C. Herder;B. Kronberg
  29. Biomaterials v.11 S. Nagaoka;A. Nakao
  30. J. Control. Rel. v.7 J. Klier;N. A. Peppas
  31. Anal. Biochem. v.150 P. K. Smith;R. I. Krohn;G. T. Hermanson
  32. Polym. Lett. Ed. v.28 J. Polym. Sci. X. M. Deng;C. D. Xiong;L. M. Cheng;R. P. Xu
  33. Introduction to Spectroscopy D. L. Pavia;G. M. Lampman;G. S. Kriz;Jr.
  34. Makromol. Chem. Rapid Commun. v.9 S. Andini;L. Ferrara;G. Maglio;R. Palumbo
  35. Biomaterials v.11 J. H. Lee;P. Kopeckova;J. Kopececk;J. D. Andrade
  36. in polymers as Biomaterials Interaction between blood components and hydrogels with poly( oxyethy-lene) chains S. Nagaoka;Y. Mori;H. Takiuchi;K.Yokota;H. Tanzawa;S. Nishiumi
  37. J. Biomed. Mat. Res. v.29 P. D. Drumheller;J. A. Hubbell