• 제목/요약/키워드: Co-occurrence Network

Search Result 197, Processing Time 0.038 seconds

Co-occurrence Patterns of Bird Species in the World

  • Kim, Young Min;Hong, Sungwon;Lee, Yu Seong;Oh, Ki Cheol;Kim, Gu Yeon;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.478-482
    • /
    • 2017
  • In order to identify key nations and bird species of conservation concern we described multinational collaborations as defined using network analysis linked by birds that are found in all nations in the network. We used network analysis to assess the patterns in bird occurrence for 10,422 bird inventories from 244 countries and territories. Nations that are important in multinational collaborations for bird conservation were assessed using the centrality measures, closeness and betweenness centrality. Countries important for the multinational collaboration of bird conservation were examined based on their centrality measures, which included closeness and betweenness centralities. Comparatively, the co-occurrence network was divided into four groups that reveal different biogeographical structures. A group with higher closeness centrality included countries in southern Africa and had the potential to affect species in many other countries. Birds in countries in Asia, Australia and the South Pacific that are important to the cohesiveness of the global network had a higher score of betweenness centrality. Countries that had higher numbers of bird species and more extensively distributed bird species had higher centrality scores; in these countries, birds may act as excellent indicators of trends in the co-occurrence bird network. For effective bird conservation in the world, much stronger coordination among countries is required. Bird co-occurrence patterns can provide a suitable and powerful framework for understanding the complexity of co-occurrence patterns and consequences for multinational collaborations on bird conservation.

Foreign Tourists' Experience Structure Visiting Cultural Tourism Resources in Jeju using Co-occurrence Network Analysis: Focused on Online Review and Grade of Global OTA (Co-occurrence 네트워크 분석을 활용한 외국인 관광객의 제주 문화관광자원 경험구조: 글로벌 OTA의 온라인 리뷰 및 평점을 대상으로)

  • Hee-Jeong Yun
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.273-287
    • /
    • 2024
  • Purpose - This study conducts the co-occurrence analysis, one of the social network analysis using global OTA's online reviews and grades in order to understand the experience structure of foreign tourists visiting cutural tourism resources in Jeju, Korea. Design/methodology/approach - For this purpose, this study selects 6 cultural tourism resources in Jeju as the study sites, and collects qualitative review data (noun, adjectives, and verb) and quantitative grade data. Findings - The co-occurrence network analysis between words and grade of market and street shows that the grade of 5 appears the most simultaneous with pork, buy, lot, try, fresh, black, food, price, seafood, local, market, good, street, etc. and the grade of 1 connects with small, dish, better, taste, etc. And the co-occurrence network analysis between words and grade of tradition and folklore shows that the grade of 5 appears the most simultaneous with village, place, museum, visit, time, life, culture, women, diver, use, lot, etc. and the grade of 1 connects with minute, spend, room, recommend, honey, etc. Research implications or originality - The above research results are relevant in order to find out the core experience of foreign tourists using online review and grade generated by foreign tourists and use as the important information to develop the strategies related to the planning and management of cultural tourism resources.

A Study on Multi-frequency Keyword Visualization based on Co-occurrence (다중빈도 키워드 가시화에 관한 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.103-104
    • /
    • 2018
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

A Study on Multi-frequency Keyword Visualization based on Co-occurrence (다중빈도 키워드 가시화에 관한 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.424-425
    • /
    • 2018
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

ANNs on Co-occurrence Matrices for Mobile Malware Detection

  • Xiao, Xi;Wang, Zhenlong;Li, Qi;Li, Qing;Jiang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2736-2754
    • /
    • 2015
  • Android dominates the mobile operating system market, which stimulates the rapid spread of mobile malware. It is quite challenging to detect mobile malware. System call sequence analysis is widely used to identify malware. However, the malware detection accuracy of existing approaches is not satisfactory since they do not consider correlation of system calls in the sequence. In this paper, we propose a new scheme called Artificial Neural Networks (ANNs) on Co-occurrence Matrices Droid (ANNCMDroid), using co-occurrence matrices to mine correlation of system calls. Our key observation is that correlation of system calls is significantly different between malware and benign software, which can be accurately expressed by co-occurrence matrices, and ANNs can effectively identify anomaly in the co-occurrence matrices. Thus at first we calculate co-occurrence matrices from the system call sequences and then convert them into vectors. Finally, these vectors are fed into ANN to detect malware. We demonstrate the effectiveness of ANNCMDroid by real experiments. Experimental results show that only 4 applications among 594 evaluated benign applications are falsely detected as malware, and only 18 applications among 614 evaluated malicious applications are not detected. As a result, ANNCMDroid achieved an F-Score of 0.981878, which is much higher than other methods.

Text Mining of Wood Science Research Published in Korean and Japanese Journals

  • Eun-Suk JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.458-469
    • /
    • 2023
  • Text mining techniques provide valuable insights into research information across various fields. In this study, text mining was used to identify research trends in wood science from 2012 to 2022, with a focus on representative journals published in Korea and Japan. Abstracts from Journal of the Korean Wood Science and Technology (JKWST, 785 articles) and Journal of Wood Science (JWS, 812 articles) obtained from the SCOPUS database were analyzed in terms of the word frequency (specifically, term frequency-inverse document frequency) and co-occurrence network analysis. Both journals showed a significant occurrence of words related to the physical and mechanical properties of wood. Furthermore, words related to wood species native to each country and their respective timber industries frequently appeared in both journals. CLT was a common keyword in engineering wood materials in Korea and Japan. In addition, the keywords "MDF," "MUF," and "GFRP" were ranked in the top 50 in Korea. Research on wood anatomy was inferred to be more active in Japan than in Korea. Co-occurrence network analysis showed that words related to the physical and structural characteristics of wood were organically related to wood materials.

Research trends related to childhood and adolescent cancer survivors in South Korea using word co-occurrence network analysis

  • Kang, Kyung-Ah;Han, Suk Jung;Chun, Jiyoung;Kim, Hyun-Yong
    • Child Health Nursing Research
    • /
    • v.27 no.3
    • /
    • pp.201-210
    • /
    • 2021
  • Purpose: This study analyzed research trends related to childhood and adolescent cancer survivors (CACS) using word co-occurrence network analysis on studies registered in the Korean Citation Index (KCI). Methods: This word co-occurrence network analysis study explored major research trends by constructing a network based on relationships between keywords (semantic morphemes) in the abstracts of published articles. Research articles published in the KCI over the past 10 years were collected using the Biblio Data Collector tool included in the NetMiner Program (version 4), using "cancer survivors", "adolescent", and "child" as the main search terms. After pre-processing, analyses were conducted on centrality (degree and eigenvector), cohesion (community), and topic modeling. Results: For centrality, the top 10 keywords included "treatment", "factor", "intervention", "group", "radiotherapy", "health", "risk", "measurement", "outcome", and "quality of life". In terms of cohesion and topic analysis, three categories were identified as the major research trends: "treatment and complications", "adaptation and support needs", and "management and quality of life". Conclusion: The keywords from the three main categories reflected interdisciplinary identification. Many studies on adaptation and support needs were identified in our analysis of nursing literature. Further research on managing and evaluating the quality of life among CACS must also be conducted.

Keyword Visualization based on the number of occurrences (출현회수에 따른 키워드 가시화 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.484-485
    • /
    • 2019
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

Keyword Visualization based on the Number of Occurrences (키워드 빈도수에 따른 시각화 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.565-566
    • /
    • 2021
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

Using Text Network Analysis for Analyzing Academic Papers in Nursing (간호학 학술논문의 주제 분석을 위한 텍스트네크워크분석방법 활용)

  • Park, Chan Sook
    • Perspectives in Nursing Science
    • /
    • v.16 no.1
    • /
    • pp.12-24
    • /
    • 2019
  • Purpose: This study examined the suitability of using text network analysis (TNA) methodology for topic analysis of academic papers related to nursing. Methods: TNA background theories, software programs, and research processes have been described in this paper. Additionally, the research methodology that applied TNA to the topic analysis of the academic nursing papers was analyzed. Results: As background theories for the study, we explained information theory, word co-occurrence analysis, graph theory, network theory, and social network analysis. The TNA procedure was described as follows: 1) collection of academic articles, 2) text extraction, 3) preprocessing, 4) generation of word co-occurrence matrices, 5) social network analysis, and 6) interpretation and discussion. Conclusion: TNA using author-keywords has several advantages. It can utilize recognized terms such as MeSH headings or terms chosen by professionals, and it saves time and effort. Additionally, the study emphasizes the necessity of developing a sophisticated research design that explores nursing research trends in a multidimensional method by applying TNA methodology.