• 제목/요약/키워드: Co-occurrence Histogram

검색결과 14건 처리시간 0.026초

컬러이미지 검색을 위한 히스토그램 평활화 기반 고유 병발 특징에 관한 연구 (Histogram Equalized Eigen Co-occurrence Features for Color Image Classification)

  • 윤태복;최영미;주문원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.705-708
    • /
    • 2010
  • An eigen color co-occurrence approach is proposed that exploits the correlation between color channels to identify the degree of image similarity. This method is based on traditional co-occurrence matrix method and histogram equalization. On the purpose of feature extraction, eigen color co-occurrence matrices are computed for extracting the statistical relationships embedded in color images by applying Principal Component Analysis (PCA) on a set of color co-occurrence matrices, which are computed on the histogram equalized images. That eigen space is created with a set of orthogonal axes to gain the essential structures of color co-occurrence matrices, which is used to identify the degree of similarity to classify an input image to be tested for various purposes. In this paper RGB, Gaussian color space are compared with grayscale image in terms of PCA eigen features embedded in histogram equalized co-occurrence features. The experimental results are presented.

3차원 Co-occurrence 특징을 이용한 지형분류 (Terrain Classification Using Three-Dimensional Co-occurrence Features)

  • 진문광;우동민;이규원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.45-50
    • /
    • 2003
  • Texture analysis has been efficiently utilized in the area of terrain classification. In this application features have been obtained in the 2D image domain. This paper suggests 3D co-occurrence texture features by extending the concept of co-occurrence to 3D world. The suggested 3D features are described using co-occurrence histogram of digital elevations at two contiguous position as co-occurrence matrix. The practical construction of co-occurrence matrix limits the number of levels of digital elevation. If the digital elevation is quantized into the number of levels over the whole DEM(Digital Elevation Map), the distinctive features can not be obtained. To resolve the quantization problem, we employ local quantization technique which preserves the variation of elevations. Experiments has been carried out to verify the proposed 3D co-occurrence features, and the addition of the suggested features significantly improves the classification accuracy.

칼라 영역의 크기와 뭉침을 기술하는 칼라 동시발생 히스토그램을 이용한 영상검색 (Image Retrieval Using the Color Co-occurrence Histogram Describing the Size and Coherence of the Homogeneous Color Region)

  • 안명석;조석제
    • 정보처리학회논문지B
    • /
    • 제13B권3호
    • /
    • pp.275-282
    • /
    • 2006
  • 칼라 영상을 효과적으로 검색하기 위해 칼라의 분포와 화소 간 위치 정보를 이용하여 영상을 검색하는 방법이 연구되었다. 본 논문에서는 적은 빈 개수로 칼라 분포와 화소 간 위치 정보를 효율적으로 기술하여 영상을 검색할 수 있는 기술자를 제안한다. 이는 칼라 동시발생 히스토그램의 대각성분과 비 대각성분에 가중치를 주어 에너지를 변형하고, 의미가 약한 값의 빈을 제거한 것이다. 분석을 통해 칼라 동시발생 히스토그램의 대각성분과 비 대각성분은 같은 칼라를 가지는 영역의 크기 정보와 그 영역 간의 뭉침 정보를 기술하며, 비 대각성분이 대각성분에 비해 영상검색에 더 우수한 특성을 나타낸다는 것을 확인하였다. 그래서, 비 대각성분의 가중치를 대각성분의 가중치에 비해 높게 주면 영상검색을 효과적으로 할 수 있다는 사실을 밝혔다. 64 레벨로 칼라 양자화된 RGB 칼라 좌표계에서의 실험영상에서, 가중치가 0.7에서 0.9인 제안한 기술자가 기존의 기술자에 비해 우수하게 영상을 검색함을 알 수 있었다.

트리 구조를 이용한 냉연 표면흠 검사 알고리듬 개발에 관한 연구 (Development of surface defect inspection algorithms for cold mill strip using tree structure)

  • 김경민;정우용;이병진;류경;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.365-370
    • /
    • 1997
  • In this paper we suggest a development of surface defect inspection algorithms for cold mill strip using tree structure. The defects which exist in a surface of cold mill strip have a scattering or singular distribution. This paper consists of preprocessing, feature extraction and defect classification. By preprocessing, the binarized defect image is achieved. In this procedure, Top-hit transform, adaptive thresholding, thinning and noise rejection are used. Especially, Top-hit transform using local min/max operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, histogram-ratio features are calculated. The histogram-ratio feature is taken from the gray-level image. For the defect classification, we suggest a tree structure of which nodes are multilayer neural network clasifiers. The proposed algorithm reduced error rate comparing to one stage structure.

  • PDF

신경회로망을 이용한 냉연 표면흠 분류를 위한 계층적 분류기의 설계 (Design of Hierarchical Classifier for Classifying Defects of Cold Mill Strip using Neural Networks)

  • 김경민;류경;정우용;박귀태;박중조
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.499-505
    • /
    • 1998
  • In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.

  • PDF

적응적 대표 컬러 히스토그램과 방향성 패턴 히스토그램을 이용한 내용 기반 영상 검색 (Content-based image retrieval using adaptive representative color histogram and directional pattern histogram)

  • 김태수;김승진;이건일
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.119-126
    • /
    • 2005
  • 본 논문에서는 영상의 블록 분류 특성에 적응적인 대표 컬러 히스토그램 (representative color histogram)과 방향성 패턴 히스토그램 (directional pattern histogram)을 이용한 새로운 내용 기반 영상 검색 방법 (content-based image retrieval)을 제안한다. 제안한 방법에서는 영상을 일정한 크기의 블록으로 나누고, 분할된 블록의 분류 특성에 따라 컬러와 패턴 특징 벡터를 추출한다. 먼저 분할된 블록을 채도 (saturation)에 따라 휘도 블록 또는 컬러 블록으로 분류한 후, 휘도 블록에 대해서는 블록 평균휘도 쌍의 히스토그램을 구하고, 컬러 블록에 대해서는 블록 평균 컬러 쌍 히스토그램을 구함으로써 블록 분류 특징에 따라 컬러 특징 벡터를 추출한다. 또한 블록 휘도 변화의 기울기 (gradient)를 계산하여 방향성 분류를 행한 후 히스토그램을 계산함으로써 블록 방향성 패턴 특징을 추출한다. 본 논문에서 제안한 영상 검색 방법의 성능을 평가하기 위해서 컴퓨터 모의실험을 행한 결과 제안한 방법이 기존의 방법들보다 정확도 (precision) 및 특징 벡터 차원 (feature vector dimension) 크기 등의 객관적인 측면에서 우수함을 확인하였다.

어두운 환경에 강인한 번호판 추출을 위한 레이블링 Hough Transform과 GLCM 기반의 탐색 기법 (The Method Based on Labeled Hough Transform and GLCM for License Plate Detection)

  • 박태준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.333-334
    • /
    • 2009
  • In this paper, I propose the novel method based on Labeled Hough transform and GLCM(Grey-Level Co-occurrence Matrix) for license plate detection. A lot of conventional methods have been proposed to detect the license plate, but those are useless in order to detect the license plate well in case of dark or unstable images. Histogram equalization is preprocessed to each image before applying this method. As a result, the license plate is detected accurately

내용기반 이미지 검색을 위한 색상, 텍스쳐, 에지 기능의 통합 (Integrating Color, Texture and Edge Features for Content-Based Image Retrieval)

  • 마명;박동원
    • 감성과학
    • /
    • 제7권4호
    • /
    • pp.57-65
    • /
    • 2004
  • 본 논문에서는 color, texture, shape의 정보를 통합 이용하여 내용기반 영상검색 시스템의 성능을 향상시키는 기법을 고찰하였다. 먼저 영상에 내재되어 있는 color를 분석 추출하여 몇 개의 대표색으로 요약 표현한 다음, 이를 활용한 근사치 측정도를 고안하였다. Texture정보 분석에 있어서는 영상의 주축 행렬 데이터를 통계적 접근 방법으로 추출하였다. Edge분석의 방법으로는 Edge 막대그래프에서 색상변환, 양자화, 필터링에 관련된 정보를 선행처리 후 Edge 정보를 추출하였다. 마지막으로, 본 연구의 결과인 내용기반 영상검색 시스템의 효율성을 precision-recall 분석과 실험적 결과를 통하여 입증하였다.

  • PDF

Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network

  • Kumar, Sanjeev;Chandra, Mahesh
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.703-715
    • /
    • 2017
  • Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.

이미지 검색을 위한 색상 성분 분석 (Color Component Analysis For Image Retrieval)

  • 최영관;최철;박장춘
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.403-410
    • /
    • 2004
  • 최근 의료 영상 분석(Medical Image Analysis)이나 영상 검색(Image Retrieval)을 위한 전처리(Preprocessing) 단계로 영상 분석(Image Analysis)에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 영상 검색에서 색상 성분(Color Component)의 활용 방법을 제안하고자 한다. 이미지를 검색하기 위해 색상 성분을 기반으로 하고, 색상(Color)을 분석하기 위한 기법으로 CLCM(Color Level Co-occurrence Matrix)과 통계적 기법을 이용하고 있다. CLCM은 기하학적 회전 변환(Geometric Rotate Transform)을 통해서 색상 성분을 3차원 공간상에 투영(Projection)하여 공간 관계(Spatial Relationship)로부터 나타나는 분포를 해석하는 방법으로, 본 논문에서 제안하는 주제이다. CLCM은 색상 모델에서 만들어지는 2차원 히스토그램을 지칭하며 색상 모델의 기하학적인 회전 변환을 통해서 생성된다. 그리고 이를 분석하기 위한 방법으로 통계 기법을 활용하고 있다. CLCM과 유사하게 2차원 분포도를 사용하는 GLCM(Gray Level Co-occurrence Matrix)[1]과 불변 모멘트(Invariant Moment)[2,3] 같은 알고리즘은 2차원적인 데이터를 해석하기 위하여 기본적인 통계 기법을 활용하고 있다. 하지만 GLCM과 불변 모멘트가 각각의 도메인에 최적화되어 있다 하더라도 공간 좌표상에 존재하는 불규칙적인 데이터를 완전히 해석할 수는 없다. 즉 GLCM과 불변 모멘트는 기초 통계 기법만을 사용하고 있기 때문에 추출된 특징들의 신뢰성이 낮다는 것이다. 본 논문에서는 이러한 단점을 보완하여 공간 관계를 해석함과 동시에 데이터의 가중치를 해석하기 위해 전형적인 다변량 통계에서 사용하는 주성분 분석(Principal Component Analysis)[4,5]을 이용하고 있다. 그리고 데이터의 정확도를 높이기 위해서 3차원 공간상에 색상 성분을 투영하여 이를 회전시키면서 데이터의 특성을 다각도에서 추출하는 방법을 제시한다.