• Title/Summary/Keyword: Co-metabolites

Search Result 205, Processing Time 0.028 seconds

CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation

  • Kim, Hyo-Jeong;Zheng, Min;Kim, Seul-Ki;Cho, Jung-Jee;Shin, Chang-Ho;Joe, Yeon-Soo;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.376-382
    • /
    • 2011
  • Background: Carbon monoxide (CO) is a cytoprotective and homeostatic molecule with important signaling capabilities in physiological and pathophysiological situations. CO protects cells/tissues from damage by free radicals or oxidative stress. NAD(P)H:quinone oxidoreductase (NQO1) is a highly inducible enzyme that is regulated by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, which is central to efficient detoxification of reactive metabolites and reactive oxygen species (ROS). Methods: We generated NQO1 promoter construct. HepG2 cells were treated with CO Releasing Molecules-2 (CORM-2) or CO gas and the gene expressions were measured by RT-PCR, immunoblot, and luciferase assays. Results: CO induced expression of NQO1 in human hepatocarcinoma cell lines by activation of Nrf2. Exposure of HepG2 cells to CO resulted in significant induction of NQO1 in dose- and time-dependent manners. Analysis of the NQO1 promoter indicated that an antioxidant responsible element (ARE)-containing region was critical for the CO-induced Nrf2-dependent increase of NQO1 gene expression in HepG2 cells. Conclusion: Our results suggest that CO-induced Nrf2 increases the expression of NQO1 which is well known to detoxify reactive metabolites and ROS.

Non-Polar Myxococcus fulvus KYC4048 Metabolites Exert Anti-Proliferative Effects via Inhibition of Wnt/β-Catenin Signaling in MCF-7 Breast Cancer Cells

  • Park, Juha;Yoo, Hee-Jin;Yu, Ah-Ran;Kim, Hye Ok;Park, Sang Cheol;Jang, Young Pyo;Lee, Chayul;Choe, Wonchae;Kim, Sung Soo;Kang, Insug;Yoon, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.540-549
    • /
    • 2021
  • The Wnt/β-catenin signaling pathway is involved in breast cancer and Myxococcus fulvus KYC4048 is a myxobacterial strain that can produce a variety of bioactive secondary metabolites. Although a previous study revealed that KYC4048 metabolites exhibit anti-proliferative effects on breast cancer, the biochemical mechanism involved in their effects remains unclear. In the present study, KYC4048 metabolites were separated into polar and non-polar (ethyl acetate and n-hexane) fractions via liquid-liquid extraction. The effects of these polar and non-polar KYC4048 metabolites on the viability of breast cancer cells were then determined by MTT assay. Expression levels of Wnt/β-catenin pathway proteins were determined by Western blot analysis. Cell cycle and apoptosis were measured via fluorescence-activated cell sorting (FACS). The results revealed that non-polar KYC4048 metabolites induced cell death of breast cancer cells and decreased expression levels of WNT2B, β-catenin, and Wnt target genes (c-Myc and cyclin D1). Moreover, the n-hexane fraction of non-polar KYC4048 metabolites was found most effective in inducing apoptosis, necrosis, and cell cycle arrest, leading us to conclude that it can induce apoptosis of breast cancer cells through the Wnt/β-catenin pathway. These findings provide evidence that the n-hexane fraction of non-polar KYC4048 metabolites can be developed as a potential therapeutic agent for breast cancer via inhibition of the Wnt/β-catenin pathway.

Could Natural Products Confer Inhibition of SARS-CoV-2 Main Protease? In-silico Drug Discovery

  • Mohamed-Elamir F Hegazy
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.14-14
    • /
    • 2020
  • In December 2019, the COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches were utilized to identify potential candidates as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. We investigated several databases including natural and natural-like products (>100,000 molecules), DrugBank database (10,036 drugs), major metabolites isolated from daily used spices (32 molecules), and current clinical drug candidates for the treatment of COVID-19 (18 drugs). All tested compounds were prepared and screened using molecular docking techniques. Based on the calculated docking scores, the top ones from each project under investigation were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined long MD simulations and MM-GBSA calculations revealed the potent compounds with prospective binding affinities against Mpro. Structural and energetic analyses over the simulated time demonstrated the high stabilities of the selected compounds. Our results showed that 4-bis([1,3]dioxolo)pyran-5-carboxamide derivatives (natural and natural-like products database), DB02388 and Cobicistat (DB09065) (DrugBank database), salvianolic acid A (spices secondary metabolites) and TMC-310911 (clinical-trial drugs database) exhibited high binding affinities with SARS-CoV-2 Mpro. In conclusion, these compounds are up-and-coming anti-COVID-19 drug candidates that warrant further detailed in vitro and in vivo experimental estimations.

  • PDF

Effect of phenobarbital sodium and 3-methylcholanthrene on metabolism in vitro and toxicity of $^{14}C$-carbofuran in rat (쥐에서 phenobarbital sodium 및 3-methylcholanthrene이 $^{14}C$-carbofuran의 독성과 in vitro 대사에 미치는 영향)

  • Han, Seong-Soo;Rim, Yo-Sup
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.29-38
    • /
    • 1998
  • In order to elucidate the effect of phenobarbital sodium(PB) and 3-methylcholanthrene(3-MC) on metabolism in vitro and toxicity of $^{14}C$-carbofuran in rat, they were administered by the chemicals, alone or in combination, and their survival ratios and metabolites were investigated. The $LD_{50}$(96 hrs) value of carbofuran to rats was 6.9 mg/kg. The toxicities of the major metabolites were in the decreasing order of 3-hydroxycarbofuran, 3-ketocarbofuran, 3-hydroxycarbofuran phenol and were much lower than that of the parent compound. When the rats were orally administered by the dose of carbofuran alone, 8.4 mg/kg, the survival ratio was 0%, whereas that was raised up to $60{\sim}80%$ with 20 mg/kg of PB or 3-MC, and 100% with 60 mg/kg of PB or 3-MC. Their metabolism in vitro occurred in the microsomal fraction. In case of carbofuran alone, the major metabolite was 3-hydroxycarbofuran. When carbofuran with PB or 3-MC, on the other hand, was treated, it was 3-ketocarbofuran. In addition, when the co-factor(NADP+G-6-P+G-6-P-DG) was added to the microsomal fraction(phase I system), and a mixture of NADPH+GSH to the 105,000g supernatant(phase II system) taken by carbofuran alone, each metabolites were produced by the maximum levels, respectively. In case of the carbofuran treatment with PB or 3-MC, the microsomal fraction of phase I system produced the maximum levels of metabolites, as in the treatment of carbofuran alone, whereas the 105,000g supernatant supplemented with the co-factor NADPH+FAD(phase II system) was brought about the maximum production of metabolites. The ratio of the formation of metabolites was 2 to 3 times higher in the combined treatment of carbofuran with PB or 3-MC than in the treatment of carbofuran alone.

  • PDF

Metabolism of Eupatilin in the Rats Using Liquid Chromatography/Electrospray Mass Spectrometry

  • Ji, Hye-Young;Lee, Hye-Won;Lee, Hong-Il;Kim, Hae-Kyoung;Shim, Hyun-Joo;Kim, Soon-Hoe;Kim, Won-Bae;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.214.2-214.2
    • /
    • 2003
  • Eupatilin (5,7-dihydroxy-3",4",6-trimethoxyflavone) is an active ingredient of an ethanol extract of Artemisia asiatica (DA-9601) that is used in the treatment of gastritis. In vitro and in vivo metabolism of eupatilin in the rats has been studied by LC- electrospray mass spectrometry. Rat liver microsomal incubation of eupatilin in the presence of NADPH and UDPGA resulted in the formation of four metabolites (M1-M4). M1, M2, M3 and M4 were tentatively identified as 3"- or- 4"-O-demethyl-eupatilin glucuronide, eupatilin glucuronide, 6-O-demethyleupatilin and 3"-or 4"-O-demethyl- eupatilin glucuronide, eupatilin glucuronide, 6-O-demethyleupatilin and 3"-or 4"-O- demethyl-eupatilin glucuronide, eupatilin glucuronide, 6-O demethyleupatilin and 3"-or 4"-O-demethyl-eupatilin glucuronide, respectively. (omitted)

  • PDF

Degradation and Detoxification of Disperse Dye Scarlet RR by Galactomyces geotrichum MTCC 1360

  • Jadhav, S.U.;Ghodake, G.S.;Telke, A.A.;Tamboli, D.P.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.409-415
    • /
    • 2009
  • Galactomyces geotrichum MTCC 1360 degraded the Scarlet RR(100 mg/l) dye within 18 h, under shaking conditions(150 rpm) in malt yeast medium. The optimum pH and the temperature for decolorization were pH 12 and $50^{\circ}C$, respectively. Enzymatic studies revealed an induction of the enzymes, including flavin reductase during the initial stage and lignin peroxidase after complete decolorization of the dye. Decolorization of the dye was induced by the addition of $CaCO_3$ to the medium. EDTA had an inhibitory effect on the dye decolorization along with the laccase activity. The metabolites formed after complete decolorization were analyzed by UV-VIS, HPLC, and FTIR. The GC/MS identification of 3 H quinazolin-4-one, 2-ethylamino-acetamide, 1-chloro-4-nitro-benzene, N-(4-chloro-phenyl)-hydroxylamine, and 4-chloro-pheny-lamine as the final metabolites corroborated with the degradation of Scarlet RR. The phytotoxicity study revealed the nontoxic nature of the final metabolites. A possible degradation pathway is suggested to understand the mechanism used by G. geotrichum and thereby aiding development of technologies for the application of this organism to the cleaning-up of aquatic and terrestrial environments.

Plant growth promoting effect of 4-quinolinone metabolites from Pseudomonas cepacia and 4-quinolinone-3-carboxylate derivatives on red pepper plant (Capsicum annum) (Pseudomonas cepacia로부터 유래한 4-quinolinone 대사물질과 4-quinolinone-3-carboxylate 유도체의 고추(Capsicum annum)에서의 생장촉진 효과)

  • Moon, Surk-Sik;Myung, Eul-Jae;Cho, Soon-Chang;Park, Jae-Bum;Chung, Bong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.2
    • /
    • pp.64-71
    • /
    • 2002
  • Plant growth promoting activity of quinolinone metabolites, 2-(2-hepteny)-3-methyl-4-quinolinone (1), 2-heptyl-3-methyl-4-quinolinone, and 2-nonyl-3-methyl-4-quinolinone, produced by Pseudomonas cepacia and ethyl 2-methyl-3-alkyl-4-quinolinone carboxylates chemically synthesized were tested by using seed-germination assay, growth increments in plant height after foliar applications. Plant height increment, fresh weight, and the number of fruits were measured after seed-soaking and drench treatment. Compound 1 among the natural products showed a consistent growth promoting effect in seed-germination and plant height after a foliar application. After a seed-soaking and drench treatment, compound 1 and synthetic ethyl 2-methyl-4-quinolinone-3-carboxylate (5) showed a significant enhancement in fresh weight and the number of fruits after harvest. Compound 1 and 5 increased the number of fruits per plant by 44% and 84% over the control, respectively.

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

Effect of 6-Aminonicotinamide on the Levels of Some Metabolites and Related Enzymes in Rabbit Serum (6-Aminonicotinamide가 토끼혈청내 효소 및 대사물질에 미치는 영향)

  • Park, In-Koo;Lee, Chul-Seung;Lee, Seung-Hoon;Song, Yoon-Kyung;Shin, Sook
    • The Korean Journal of Zoology
    • /
    • v.33 no.4
    • /
    • pp.493-498
    • /
    • 1990
  • The effects of an antimetabolite, 6-aminonicotinamide (6-AN) on the levels of enzymes and metabolites in rabbit serum were investigated. The intraperitoneal administration of 6-AN (multiple doses of l5mg/kg body weight) gave tise to a remarkable increase in glucose and cholesterol levels but did not exert any appreciable influence on the concentration of albumin and total protein. Alkaline phosphatase activity was significantly reduced by administration of 6-AN, whereas creatine phophokinase, serum glutamic oxaloacetate transaminase and serum glutamic pyruvate transaminase activities were matkedly enhanced. Nevettheless, the levels of Ca, P, Na, K, Cl and Co were not affeded to any extent by 6-AN.

  • PDF