• 제목/요약/키워드: Co-alloy

검색결과 1,335건 처리시간 0.027초

고속도금된 Zn-Cr 및 Zn-Cr-X 3원합금의 전류효율 및 조성 (Current Efficiency and Composit ion of Zn-Cr and Zn-Cr-X Ternary Alloy Electrodeposits)

  • 예길촌;김대영;안덕수
    • 한국표면공학회지
    • /
    • 제36권3호
    • /
    • pp.256-262
    • /
    • 2003
  • The current efficiency and the composition of Zn-Cr and Zn-Cr-X (X : Co, Mn) alloy electrodeposits were investigated by using chloride bath with EDTA auditive and flow cell plating system. The current efficiency of Zn-Cr alloy decreased with increasing current density, while it increased with the content of Co and Mn of the Zn-Cr-X alloy bath in high current density region. The Cr content in Zn-Cr alloy increased from 1.4-2.7 to $28wt\%$ with increasing current density and the phase structure of the alloys changed from $\eta-Zn$ through $\eta-Zn+\gamma'-ZnCr\;to\;\gamma'-ZnCr$ with Increasing Cr content of the alloys. The Co content in Zn-Cr-Co alloys increased with Co content of the bath, while Cr content of the alloy increased or decreased in low current density region $(10-75A/dm^2)$ or high current density region $(75-100A/dm^2)$, respectively. $\gamma-ZnCo$ phase was formed in the Zn-Cr-Co alloy with above $9.0wt\%$ Co. The content of Mn and Cr in Zn-Cr-Mn alloys increased or decreased with the increase of current density in high current density region, respectively while Cr content of the alloy decreased noticeably with the increase of Mn content in the bath. Two phases of $\delta_1-ZnMn$ and $\gamma'-ZnCr$ were formed in the Zn-Cr-Mn alloy with above $8.6wt\%$ Mn.

Feasibility Study of HDDR and Mechanical Milling Processes for Preparation of High Coercivity SmCo5 Powder

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • 제8권3호
    • /
    • pp.124-127
    • /
    • 2003
  • HDDR (hydrogenation, disproportionation, desorption, recombination) and mechanical milling processes have been applied to the $SmCo_{5}$ alloy in an attempt to produce a highly coercive powder. The $SmCo_{5}$ alloy had very high structural stability under the hydrogen atmosphere and the 1:5 phase was only partially disproportionated under up to 10 kgf/$\textrm{cm}^2$ hydrogen gas. The partially disproportionated material was recombined not into 1:5 phase after the HDDR, but rather into multi-phase mixture consisting of 1:5, 2:17, 2:7 and 1:7 phases. The $SmCo_{5}$ alloy HDDR-treated with hydrogen up to 10 kgf/$\textrm{cm}^2$ had poor coercivity. For a useful HDDR to prepare a high coercivity $SmCo_{5}$ alloy powder, much higher hydrogen pressure well exceeding 10 kgf/$\textrm{cm}^2$ would be required. The $SmCo_{5}$ alloy lump was amorphized by an intensive mechanical milling, and it was crystallised ultra-finely by a subsequent optimum annealing. The optimally annealed material had very high coercivity, and it was found that the mechanical milling followed by an annealing was an effective way of producing highly coercive $SmCo_{5}$ alloy powder.

도재용착용 Ni-Cr 합금과 Co-Cr 합금의 열처리에 따른 전단결합강도 비교 (Comparison of Shear Bond Strength of Ceramic Fused to Ni-Cr and Co-Cr Alloy by Heat Treatment)

  • 안재석;고은경;주규지
    • 대한치과기공학회지
    • /
    • 제33권3호
    • /
    • pp.185-192
    • /
    • 2011
  • Purpose: This study was to evaluate the shear bond strength of the ceramic fused to Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) by heat treatment. Methods: Metal specimens were divided into 5 groups for each alloy according to heat treatment conditions prior to porcelain application. Fifteen specimens from each group were subjected to a shear load a universal testing machine using a 0.1mm/min cross-head speed and one specimen from each group was observed with EDX line profile. Results: The diffusion of metal oxide observed far in the specimen heat treated than no heat treated in the opaque layer. The shear bond strength measured highest to BP3(50.50MPa), WC2(50.49MPa) groups and measured lowest from BP1(35.1MPaa), WC1(39.66MPa) groups which were not treated with heat, and there was a significant difference (p<0.05). Conclusion: The shear bond strength of Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) measured similar 5 groups all.

도재 소부용 팔라디움계 합금의 도재 결합양상에 관한 연구 (A STUDY ON THE BONDING BEHAVIOR OF PALLADIUM-BASED ALLOYS FOR CERAMO-MENTAL RESTORATION)

  • 장훈;임호남;최부병
    • 대한치과보철학회지
    • /
    • 제27권1호
    • /
    • pp.143-179
    • /
    • 1989
  • To observe the bonding behavior of palladium-based alloys to porcelain; 1. Pd-Co binary alloy with the higher cobalt content, 2. Pd-Co binary alloy with the lower cobalt content, 3. Pd-Ag-Sn ternary alloy, 4. Pd-Ag binary alloy, 5. Pd-Cu-Au ternary alloy and 6. Pd-Cu binary alloy were made as 6 groups of experimental alloys. Each group of alloy was divided into 4 sub-groups such as one sub-group that was not degassed and three sub-groups that degassed for 5 minutes, 10 minutes and 15 minutes. On each specimen, weight changes after degassing, morphological changes of oxide layer by changing the degassing time, compositional changes at metal-ceramic interface and bond strength of metal-ceramic measured with planar shear test were observed and compared. The results of the present study allow the following conclusions to be drawn: 1. The alloy showing the greatest bond strength was Pd-Cu alloy without gold and bond strength was decreased by alloying gold to them. 2. Although Pd-Co alloy showed the most prominent oxidation behavior, bond strength of them to porcelain was not greatly high by the formation of porosities at metal-ceramic interfaces. 3. Likewise tin, cobalt formed the peaks on line profiles at metal-ceramic interface, however copper did not exhibit such peaks on line profiles. 4. Mainly, oxide layer on Pd-Co alloy was composed with cobalt, and for Pd-Co alloy with higher cobalt content the rise of bond strength was not significant by increased degassing time. 5. On Pd-Ag alloy not containing tin, during degassing for 15 minutes silver content was increased at metal-ceramic interface. 6. As an oxidized element, tin formed the oxide layers that widen their area by increasing the degassing time, while cobalt and copper showed the morphological changes of particle or crystal on oxide layer.

  • PDF

체심정방정 구조 Fe-Co계 합금상의 합성 및 그 자기적 특성 (Synthesis and Magnetic Properties of Body-centered-tetragonal Fe-Co Alloy)

  • 김경민;권해웅;이정구;유지훈
    • 한국자기학회지
    • /
    • 제27권4호
    • /
    • pp.129-134
    • /
    • 2017
  • 합금 제조에 흔히 이용되는 기존의 용해, 응고, 열처리 등의 가공 공정으로 덩치 형태의 체심정방정 구조의 Fe-Co계 합금상을 합성하고, 그 결정학적, 자기적 특성을 조사하였다. $(Fe_{100-x}Co_x)_{1-y}C_y$ 합금에서 체심정방정 구조의 단일상(martensite)이 얻어지는 Co 및 C의 함량은 크게 제한되어, Co의 함량 x = 2.5, C의 함량 y = 0.062로 제한된 조성에서 체심정방정 구조의 단일상 합금이 얻어졌다. 합성된 조성 $(Fe_{97.5}Co_{2.5})_{0.938}C_{0.062}$인 체심정방정 구조의 단일상 합금의 정방성(tetragonality, c/a)은 1.05였으며, 이 합금의 결정자기 이방성 상수, $K_1$ 값은 순수 철(${\alpha}-Fe$)의 $K_1$ 값에 비하면 3.1배 정도 높은 $1.5{\times}10^5J/m^3$였다.

치과주조용 비귀금속 합금의 금속 용출 수준 (Concentration of elemental ions released from non-precious dental casting alloys)

  • 사공준;박수철
    • 대한치과기공학회지
    • /
    • 제35권1호
    • /
    • pp.1-17
    • /
    • 2013
  • Purpose: This study was to assess the extents of the release of metals from the non-precious alloys used for dental casting by measuring the differences in the extents of the release of metals by types of alloys, pH level and elapsed time. Methods: Uniform-sized specimens(10 each) were prepared according to the Medical Device Standard of the Korea Food and Drug Administration(2010) and International Standard Organization(ISO22674, 2006), using four types of alloys(one type of Ni-Cr and one type of Co-Cr used for fixed prosthesis, and one type of Ni-Cr and one type of Co-Cr used for removable prosthesis). A total of 12 metal-release tests were performed at one-day, three-day, and two-week intervals, for up to 20 weeks. The metal ions were quantified using an Inductively Coupled Plasma-Atomic Emission Spectrometer. Results: The results showed that the extent of corrosion was higher in the ascending order of Jdium-$100^{(R)}$, Bellabond-$Plus^{(R)}$, Starloy-$C^{(R)}$, and Biosil-$F^{(R)}$. The lower the pH and the longer the elapsed time were, the greater the increase in metal corrosion. At pH 2.4, the release of Ni from Jdium-$100^{(R)}$, a Ni-Cr alloy, was up to 15 times greater than the release of Co from the Co-Cr alloy from two weeks over time, indicating that the Ni-Cr alloy is more susceptible to corrosion than the Co-Cr alloy. Conclusion: It is recommended that Co-Cr alloy, which is highly resistant to corrosion, be used for making dental prosthesis with a non-precious alloy for dental casting, and that non-precious alloy prosthesis be designed in such a way as to minimize the area of its oral exposure. For patients with non-precious alloy prostheses, a test of the presence or absence of periodontal tissue inflammation or allergic reaction around the prosthesis should be performed via regular examination, and education on the good management of the prosthesis is needed.

Ge-MOSFETs을 위한 Ni-Co 합금을 이용한 Ni-germanide의 열안정성 개선 (Thermal Stability Improvement of Ni-germanide using Ni-Co alloy for Ge-MOSFETs Technology)

  • 박기영;정순연;장잉이;한인식;이세광;종준;신홍식;김영철;김재준;이가원;왕진석;이희덕
    • 한국전기전자재료학회논문지
    • /
    • 제21권8호
    • /
    • pp.733-737
    • /
    • 2008
  • In this paper, Ni-Co alloy was used to improve thermal stability of Ni Germanide. It was found that uniform germanide is obtained on epitaxial Ge-on-Si substrate by employing Ni-Co alloy. Moreover, neither agglomeration nor penetration is observed during post-germanidation annealing process. The thermal stability of Ni germanide using Ni-Co alloy is improved due to the less agglomeration of Germanide. Therefore, the proposed Ni-Co alloy is promising for highly thermal immune Ni germanide for nano scale Ge-MOSFETs technology.

Alkali 물질이 포함되지 않은 화학물질을 이용한 Co 합금박막의 무전해도금 (Electroless Plating of Co-Alloy Thin Films using Alkali-Free Chemicals)

  • 김태호;윤형진;김창구
    • Korean Chemical Engineering Research
    • /
    • 제45권6호
    • /
    • pp.633-637
    • /
    • 2007
  • Alkali 물질이 포함되지 않은 $(NH_4)_2Co(SO_4)_2{\cdot}6H_2O$, $(NH_4)_2WO_4$, $(NH_4)H_2PO_4$ 등의 전구체를 사용하여 구리배선의 보호막 제조를 위한 Co 합금박막의 무전해도금을 수행하였다. pH, Co 전구체 농도, 증착온도 등의 공정변수들의 변화에 대한 Co 합금박막의 두께와 표면형상을 살펴봄으로써 이들 공정변수가 alkali 물질이 포함되지 않은 화학물질로 무전해도금된 Co 합금박막의 특성에 끼치는 영향을 살펴보았다. pH, Co 전구체 농도, 증착온도가 증가할수록 Co 합금 박막의 두께가 증가하였고 이는 alkali 물질이 포함된 Co 합금박막의 무전해도금 결과와 비슷하다. SEM(scanning electron microscopy)을 이용한 Co 합금박막의 표면형상 관측 결과, 본 연구에서 사용된 공정조건에서 Co 합금박막의 무전해도금을 위한 적절한 pH와 온도의 범위가 각각 8.5~9.5와 $75{\sim}85^{\circ}C$임을 얻었다. 본 연구를 통하여 alkali 물질이 포함되지 않은 화학물질을 이용한 무전해도금으로 구리배선의 보호막 제조용 Co 합금박막의 증착이 가능함을 확인하였다.

Fe-23%Mn 마르텐사이트합금의 진공감쇠능에 미치는 Co 첨가의 영향 (Effects of Co Addition on Damping Capacity of Fe-23%Mn Martensite Alloy)

  • 공동건;전중환;최종술
    • 열처리공학회지
    • /
    • 제10권3호
    • /
    • pp.209-217
    • /
    • 1997
  • Effect of Co content on the microstructure and damping capacity of Fe-23%Mn-X%Co alloy was studied. The volume fraction of ${\varepsilon}$ martensite of the alloy was increased with increasing Co content. The hardness was increased with lowering cooling temperature and increasing Co content in Fe-23%Mn-X%Co alloy, which is ascribed to the increase in ${\varepsilon}$ martensite content. The damping capacity of Fe-23%Mn-X%Co alloy was linearly increased with increasing the strain amplitude, and was constant regardless of Co content at the same volume fractions of ${\varepsilon}$ martensite when the low strain amplitudes ($1{\sim}3{\times}10^{-4}$) were applied, while the damping capacity with large strain amplitudes ($4{\sim}6{\times}10^{-4}$) became higher with increasing Co content at all valume fractions of ${\varepsilon}$.

  • PDF

금 합금 도금층의 접촉저항에 미치는 합금원소의 종류 및 Thermal Aging의 영향 (Effect of Alloying Elements and Thermal Aging on the Contact Resistance of Electroplated Gold Alloy Layers)

  • 이지웅;손인준
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.235-241
    • /
    • 2013
  • In this study, the effects of alloying elements and thermal aging on the contact resistance of electroplated gold alloy layers were investigated by surface analysis using X-ray photoelectron spectroscopy (XPS). The contact resistance of Au-Ag alloy was lower than that of Au-Ni or Au-Co alloy after thermal aging. The XPS results show that nickel and oxygen present as nickel oxides such as NiO and $Ni_2O_3$ on the surface of gold layers after thermal aging. The increase in the contact resistance after thermal aging is attributable to the nickel oxide layer formed on the surface of the gold layers. The content of nickel diffused from the underlayer during the thermal aging was high in the order of Au-Co, Au-Ni and Au-Ag alloy because the area of grain boundary was large in the order of Au-Ag, Au-Ni and Au-Co alloy.