• 제목/요약/키워드: Co-alloy

검색결과 1,341건 처리시간 0.026초

초고속 회전체의 내구성향상을 위한 Co-alloy(T800)의 초고속 용사코팅 (HVOF Spray Coating of Co-alloy(T800) for the Improvement of durability of High Speed Spindle)

  • 조동율;윤재홍;김길수;윤석조;백남기;박병철;천희곤
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.32-37
    • /
    • 2006
  • Micron size Co-alloy(T800) powder was coated on Inconel 718 by HVOF thermal spraying for the studies of the improvement of durability of high speed spindle by using Taguchi program for the parameters of spray distance, flow rates of hydrogen and oxygen and powder feed rate. The optimal coating process was determined by the studies of coating properties such as micro-structure, porosity, surface roughness and micro hardness. Friction and wear behaviors of coatings were investigated by sliding wear test at room temperature and $1000^{\circ}F(538^{\circ}C)$. At both room temperature and $538^{\circ}C$ the sliding wear debris and friction coefficients of the coating were drastically reduced compared with the surface of non-coated parent material. This shows that Co-alloy powder coating is highly recommendable for the durability improvement surface coating of high speed air-bearing spindle. At high temperature wear traces and friction coefficients of both coating and non-coating were drastically reduced compared with those of room temperature since the brittle oxides were formed easily on the surface, and the brittle oxide phases were attrited by the reciprocating sliding wear according to the complicated mixed wear mechanisms These oxide particles, partially melts and the melts play role as lubricant and reduce the wear and friction coefficient. This also shows that Co-alloy powder coating is highly recommendable far the durability improvement surface coating on the surface vulnerable to frictional heat such as high speed spindles.

치과보철용 자석재료의 전기화학적 안정성 개선효과 (IMPROVEMENT EFFECTS OF ELECTROCHEMICAL STABILITY OF MAGNETIC MATERIALS FOR PROSTHETIC DENTISTRY)

  • 곽종하;오상호;최한철;정재헌
    • 대한치과보철학회지
    • /
    • 제44권5호
    • /
    • pp.628-641
    • /
    • 2006
  • Statement of problem: Dental magnetic materials have been applied to removable prosthetic appliances, maxillofacial prostheses, obturator and dental implant but they still have some problems such as low corrosion resistance in oral environments. Purpose: To increase the corrosion resistance of dental magnetic materials, surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels. Materials and methods : Surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels, and then three kinds of electrochemical corrosion test were performed in 0.9% NaCl solution; potentiodynamic, potentiostatic, and electrochemical impedance test. From this study, corrosion behavior, amount of elements released, mean average surface roughness values, the changing of retention force, and magnetic force values were measured comparing with control group of non-coated magnetic materials. Results: The values of surface roughness of TiN coated Sm-Co and TiN coated Nd-Fe-B based magnetic materials were lower than those of non coated Sm-Co and Nd-Fe-B alloy. From results of potentiodynamic test, the passive current density of TiN coated Sm-Co alloy were smaller than those of TiN coated Nd-Fe-B alloy and non coated alloys in 0.9% NaCl solution. From results of potentiostatic and electrochemical impedance test, the surface stability of the TiN coated Sm-Co alloy was more drastically increased than that of the TiN coated Nd-Fe-B alloy and non-coated alloy. The retention and magnetic force after and before corrosion test did not change in the case of TiN coated magnetic alloy sealed with stainless steel. Conclusion: It is considered that the corrosion problem and improvement for surface stability of dental magnetic materials could be solved by ion plating with TiN on the surface of dental magnetic materials and by sealing with stainless steels.

자성 Co-Ni 계 형상기억합금의 특성 (Characterization of Co-Ni Based Ferromagnetic Shape Memory Alloy)

  • 한지원;박성범
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.8-13
    • /
    • 2015
  • The magnetic shape memory alloys have recently received a lot of attention due to the considerable progress achieved in understanding the particular importance and the development of the factors. Among these alloys, the ferromagnetic Co-Ni- alloys have been concerned specially because of the thermoelastic character of the fcc (g) - bct (a) martensitic transformation which exhibits under the action of the temperature (shape memory effect), the stress (superelasticity) and the magnetic field (magnetoelasticity). The morphological, the crystallographical, and the thermal characteristics of thermally induced martensite in Co-35.3Ni-11.3Al(wt.%) and Co-28.1Ni-47.4Fe-3.3Ti (wt.%) alloy have been investigated by the scanning electron microscope (SEM), the X-ray Diffraction (XRD), and the differential scanning calorimeter (DSC).

AgCo 합금박막 및 Fe/AgCo/Fe 삼층막의 자기 및 자기저항 거동 (Mgnetic and Magnetoresistance Behavior of AgCo Alloy Films and Fe/AgCo/Fe Sandwiches)

  • 김세휘;이성래
    • 한국자기학회지
    • /
    • 제9권2호
    • /
    • pp.104-110
    • /
    • 1999
  • 조성, 열처리 및 강자성 상하지층이 AgCo 나노입상 합금박막의 거대자기저항과 포화자기장에 미치는 효과에 대하여 연구하였다. 합금박막의 두께가 50nm이하에서는 두께가 감소함에 따라 자기저항이 급격히 감소하고 포화자기장은 증가한다. 합금박막의 Co조성의 증가, 열처리 및 Fe 상하지층의 피복으로 Co입자의 크기 및 밀도의 증가, 표면에서의 스핀전도산란의 감소로 합금박막 두께 감소에 따른 비저항차의 감소 및 포화자기장의 증가를 억제할 수 있었다. 합금박막의 Co조성이 30at.%이고 Fe(30nm)/AgCo(20nm)/Fe(30nm)인 삼층박막의 증착된 상태에서 포화자기장이 약5kOe, 자기저항값이 약 5%이었다. 합금박막의 Co 조성을 40at.%로 증가시키고 30$0^{\circ}C$에서 10분간 열처리한 경우 포화자기장은 약1kOe로 1/5로 줄었으나 자기저항 값은 5.16%로 변화가 없었다.

  • PDF

핵연료피복관용 Zr 합금의 제조공정에 따른 미세조직 및 부식거동 (Microstructure and Corrosion Behavior of Zr Alloys with Manufacturing Process)

  • 김현길;최병권;김규태;김선두;박찬현;정용환
    • 열처리공학회지
    • /
    • 제18권5호
    • /
    • pp.288-296
    • /
    • 2005
  • The corrosion behaviors of Zr-based alloys were very sensitive to their microstructures which were determined by manufacturing process. The specimens of Zr-based alloy named as HANA-4 for nuclear fuel cladding were investigated in order to get the optimized manufacturing process such as the intermediate annealing temperature and cold working steps after the ${\beta}$ quenching. From the microstructural analysis, cold worked microstructure of the samples was changed to the recrystallized microstructure by performed process. The corrosion behaviors of HANA-4 alloy were affected by the different manufacturing process. The ${\beta}$-Zr phase was formed in the matrix and the Nb concentration in the ${\beta}$-Zr phase was increased as progressing the manufacturing process. So, it was found that the corrosion rate of HANA-4 alloy was affected by the Nb concentration in the matrix.

수소환원법으로 제조된 나노구조 Fe-Co 합금분말의 미세구조 및 자성특성 (Micro Structures and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Hydrogen Reduction Process)

  • 안봉수;이백희;이규환;김영도
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.488-492
    • /
    • 2002
  • Magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on the synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. It is well known that when Fe-Co alloy undergoes ordering transformation, soft magnetic properties could be obtained. There are many reports that the magnetic properties of the materials can be changed with variation of grain size. In the present work, nanostructured Fe-50at.%Co alloy powder produced by hydrogen reduction process (HRP) starting with two oxide powder mixtures of $Fe_2O_3\;and\; Co_3O_4$. The mean grain size of the HRP powders was about 40 nm and coercivity of the: powders was about 43 Oe.

Magnetization Behavior of Ultra-thin FexCo1-x Alloy on Cr (100) Surface

  • Hossain, M.B.;Kim, C.G.;Chun, B.S.;Kim, W.;Hwang, C.Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 임시총회 및 하계학술연구발표회
    • /
    • pp.15-16
    • /
    • 2013
  • Magnetization behavior of ultra thin $Fe_xCo_{1-x}$ alloy (where x varies from 0 to 100) has been investigated as functions of composition on Cr (100) substrate by using in situ surface magneto optical Kerr effect (SMOKE). It's always show in plane uniaxial magnetic anisotropy at room temperature (RT) & Low temperature (LT). It is observed that composition dependent coercive force maximum at about 30 at % Co and 70 at % Co atomic ratio and minimum near equiatomic site. The relative magnetic moments as composition variation also show magnetization collapse near equiatomic site. The magnetization behaviors of Fe-Co alloy on Cr (100) due to composition varies are supported the order-disordering as well as structural stability bcc (ferromagnetic)/fcc (anti-ferromagnetic) phase stability magnetism.

  • PDF

Pt-Co 합금박막 측온저항체 온도센서의 제작 (Fabrication of Pt-Co Alloy Thin Films RTD Temperature Sensors)

  • 홍석우;서정환;정귀상;노상수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.431-434
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on Al$_2$O$_3$ substrate by r.f. cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the Al$_2$O$_3$ substrate by lift-off method and investigated the physical and electrical characteristics of these films under various conditions (the input power, working vacuum, annealing temperature, thickness of thin films) and also after annealing these films. At input power of Pt : 4.4 W/$\textrm{cm}^2$, Co : 6.91 W/$\textrm{cm}^2$, working vacuum on and annealing conditions of 1000 $^{\circ}C$ and 60 min, the resistivity and the sheet resistive thin films were 15 ${\mu}$$\Omega$$.$cm and 0.5 $\Omega$/$\square$, respectively. The TCR value of Pt-Co a films was measured with various thickness of thin films and annealing temperature. T TCR value is gained under condition 3000${\AA}$ of thin films thickness and 1000$^{\circ}C$ of temperature. These results indicate that Pt-Co alloy thin films have potentiality for the wide temperature ranges.

  • PDF

삽입철거 회수가 수종의 Cr-Co 합금 Clasp 유지력에 미치는 영향에 관한 실험적 연구 (THE EXPERIMENTAL STUDY ON THE EFFECT OF THE INSERTION-WITHDRAWAL COUNT TO THE RETENTIVE CAPACITIES OF SEVERAL Cr-Co ALLOY CLASPS)

  • 배정수;이호용
    • 대한치과보철학회지
    • /
    • 제30권4호
    • /
    • pp.498-507
    • /
    • 1992
  • This study was to investigate the retentive force changes according to repeated insertion and withdrawal of Cr-Co alloy clasps, commonly used in this country, and the differences in retentive capacities between Aker's clasp and I-bar clasp. The author selected 4 kinds of Cr-Co alloys and Type IV gold alloy, and measured the retentive force changes of each clasp type in undercut depth of 0.25mm and analyzed statistically. The following results were obtained. 1. In both Aker's and I-bar clasps, there were no statistically significant differencies in retentive forces among 4 Cr-Co alloys. 2. Cr-Co alloys exerted greater retentive forces than those of gold alloy, 2 times greater in Aker's clasps and 2.5 times in I-bar clasps. 3. In all test specimens, I-bar clasps exerted greater retentive forces than Aker's clasps. 4. In all test specimens, there were trends of second order relationships in retentive force changes.

  • PDF

Cu-1.6%Co-0.38%Si 합금의 용체화처리에 따른 기계적 성질의 변화 (Changes in Mechanical Properties according to Solid Solution Treatment of Cu-1.6%Co-0.38%Si Alloy)

  • 곽원신;이시담
    • 열처리공학회지
    • /
    • 제33권6호
    • /
    • pp.277-283
    • /
    • 2020
  • Cu-Co-Si based alloy has a strengthening mechanism for Co2Si intermetallic compounds deposited on the copper matrix after aging treatment and the solution treatment has a key influence on the strength and electrical conductivity of the final products. In this paper, the Cu-1.6%Co-0.38%Si alloy was fixed at the time and the solution treatment temperature was set at a temperature in the range of 800 to 950℃, and the change in mechanical properties was observed by fixing the temperature at 950℃ and changing the time. The microstructure was observed using an electron microscope and an optical microscope, and the changes in hardness, electrical conductivity, and bending workability after aging treatment were investigated. When the solution treatment time is less than 20 seconds, the solution treatment is not sufficient and the formation of precipitates contributing to the increase in hardness decreases and the hardness decreases after the aging treatment, and in more than 50 seconds, the hardness decreases due to the coarsening of the grains and the bending workability got worse.