• Title/Summary/Keyword: Co-Curing Process

Search Result 79, Processing Time 0.021 seconds

Preparation of Hydrophilic Coating Films by using of Aminosilane and Colloidal Silica (아미노실란과 콜로이드 실리카를 이용한 친수성 코팅 도막의 제조)

  • Ah, Chi-Yong;Lee, Byoung-Hwa;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.247-252
    • /
    • 2017
  • Hydrophilic coating solutions were prepared by reacting a silane coupling agent, aminosilane with colloidal silica (15~20 nm in diameter). Hydrophilic coating films were also obtained by depositing the hydrophilic coating solutions on polycarbonate substrates by dip-coating and subsequently by thermal curing at $120^{\circ}C$. During this process, the effect of types of aminosilane was studied on the properties of coating films. As a result, coating films, prepared with 3-aminopropyltriethoxysilane (APTES) as aminosilane, showed contact angles of $25{\sim}44^{\circ}$ and a poor pencil hardness of B. On the other hand, coating films, prepared with 3-aminopropyltrimethoxysilane (APTMS) as aminosilane, exhibited contact angles of $26{\sim}37^{\circ}$ and a good pencil hardness of 2H.

Heating Behavior and Adhesion Property of Epoxy Adhesive with Nano and Micro Sized Fe3O4 Particles (Nano 및 Micro 크기의 Fe3O4 분말이 첨가된 열경화성 에폭시 접착제의 유도가열 및 접착 특성)

  • Hwang, Ji-Won;Im, Tae-Gyu;Choi, Seung-Yong;Lee, Nam-Kyu;Shon, Min-Young
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.55-60
    • /
    • 2020
  • A study on the heating behavior and adhesion property of structural epoxy adhesive through induction heating have been conducted. An adhesive for induction heating was manufactured through mixing with nano and micro sized Fe3O4. From the results, it was observed that induction heating is less affected by adherend (GFRP) thickness than oven heating. The heating rate of Fe3O4 embedded epoxy adhesive using induction heating much higher than that of oven curing process and it is more appreciable when the contents of Fe3O4 increased. Furthermore, adhesion strength increased with increase of Fe3O4 particle contents.

A Study on the Fatigue Strength of the 3-D Reinforced Composite Joints (3-차원 보강 복합재 체결부의 피로강도 특성 연구)

  • Kim, Ji-Wan;An, Woo-Jin;Seo, Kyeong-Ho;Choi, Jin-Ho
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.322-327
    • /
    • 2022
  • Composite lap joints have been extensively used due to their excellent properties and the demand for light structures. However, due to the weak mechanical properties in the thickness direction, the lap joint is easily fractured. various reinforcement methods that delay fracture by dispersing stress concentration have been applied to overcome this problem, such as z-pinning and conventional stitching. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. I-fiber stitching method is a promising technology that combines the advantages of both z-pinning and the conventional stitching. In this paper, the static and fatigue strengths of the single-lap joints reinforced by the I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process and I-fiber reinforcing effects were evaluated according to adherend thickness and stitching angle. From the experiments, the thinner the composite joint specimen, the higher the I-fiber reinforcement effect, and Ifiber stitched single lap joints showed a 52% improvement in failure strength and 118% improvement in fatigue strength.

Analysis of Mechanical Properties of Solidified soil using Pig Iron Slag (용선슬래그를 활용한 고화토의 역학적 특성 분석)

  • Yang, Chul-Jin;Bae, Jun-Seok;Byun, Ho-Seok;Lee, Kang-Hwi;Lee, Jong-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • We conducted research to develop a solidification agent for the ground surface reinforcement method in which activator is fused by recycling pig iron slag, which is a byproduct generated in the steel making process. The purpose of this research is to solve the problems of surface soil by improving the strength and durability of foundation soil such as soil loss, settlement, sinkhole, etc. by recycling pig iron slag from disused or landfilled steelworks. For this purpose, the possibility of using pig iron slag as a solidification soil was evaluated by the compressive strength, elution test of harmful materials, permeability coefficient test. As a result of the compressive strength test, the values of the strength of the curing 28 days of the solidified soil having the solidification agent mixing ratio of 12% were found to be 0.93, 0.96 and 1.3 MPa, respectively, satisfying the required strength value of 1 MPa, In the case of permeability coefficients, the minimum values were $4.1{\times}10^{-8}$, $7.0{\times}10^{-7}$, and $1.7{\times}10^{-7}cm/sec$, respectively, at the solidification agent mixing rate of 12%. In addition, as a result of the elution test of harmful materials, a small amount was detected in the item of hexavalent chromium but satisfied the inclusion criteria, and in the remaining items, heavy metals were not eluted.

Investigating the Effect of Photoinitiator Types and Contents on the Photocuring Behavior of Photocurable Inks and Their Applications for Etching Resist Inks (광개시제 종류 및 함량에 따른 광경화형 잉크의 광경화 특성과 인쇄회로기판용 에칭 레지스트 소재로의 적용성 연구)

  • Bo-Young Kim;Subin Jo;Gwajeong Jeong;Seong Dae Park;Jihoon Kim;Eui-Keun Choi;Myong Jae Yoo;Hyunseung Yang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.444-449
    • /
    • 2023
  • As electronic devices become smaller and more integrated, the demand for manufacturing thin, flexible printed circuit boards (FPCBs) has increased. Although FPCBs are conventionally manufactured by a photolithography method using dry film resist, this process is complicated, and the mask is specifically designed to obtain the precision of the desired circuit line width. In this regard, manufacturing FPCBs with fine patterns through the direct printing method of photocurable inks has gained growing attention. Since the manufacturing process of FPCBs is based on the direct printing method that includes etching and stripping processes utilizing acid and basic chemicals, controlling the adhesion strength, the etching resistance, and the strippability of photocured inks has drawn a lot of attention for the fabrication of fine patterns through photocurable inks. In this study, acrylic ink with various types and contents of the photoinitiator was prepared, and the curing behavior was analyzed. Also, the adhesion strength, etching resistance, and strippability were analyzed to evaluate the applicability of developed photocurable etching resist inks.

Mineralogical and Physical Properties of Lime Plaster used in Wall Repair in Temple of Bagan, Myanmar (미얀마 바간지역 사원 벽체 보수에 사용되는 석회 플라스터의 광물학적 및 물리적 특성)

  • Ahn, Sunah;Kim, Eunkyung;Nam, Byeongjik;Hlaing, Chaw Su Su;Kang, Soyeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The purposes of this study were to analyze the mineralogical characteristics of slaked lime used for wall repair of traditional buildings in Bagan, Myanmar and to evaluate the physical properties of lime plaster produced by the same method as Bagan region. In the X-ray diffraction and thermal analysis of the Myanmar slaked lime, portlandite ($Ca(OH)_2$) and brucite ($Mg(OH)_2$) were detected as main constituent minerals, and a carbonate rock mainly composed of dolomite ($CaMg(CO_3)_2$) minerals may be used as a raw material to make slaked lime. The field-emission scanning electron microscope analysis showed that the Myanmar slaked lime was composed of irregularly shaped crystals of $0.5{\mu}m$ or larger and a small amount of $0.1{\mu}m$ of plate - like crystals. The size and uniformity of crystals in Myanmar lime is different from that of Korea slaked lime. This may be attributed to the effect of the mineral composition and the lime hydration method of Myanmar, which produces slurry by immersing the burnt lime in excess water for a long period of time. The compressive strength of the lime plaster in Myanmar resulted in a mean value of $1.13N/mm^2$ for the specimens cured for 28 days. The strength of the specimens with Bale juice was $1.03N/mm^2$, respectively. The lime is an air setting material that exhibits strength through long carbonation process. Therefore, it is necessary to evaluate physical properties according to curing period through long-term curing over 28 days in the future.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

Pull-off Strength of Jagged Pin-reinforced Composite Hat Joints (요철핀으로 보강된 복합재 모자형 체결부 구조의 강도 연구)

  • Kwak, Byeong-Su;Kim, Dong-Gwan;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.323-331
    • /
    • 2018
  • The effect of stainless steel jagged-pin reinforcement on the pull-off strength of the composite hat-joint was studied by the test. The pins were physically and chemically surface-treated and inserted in the thickness direction over the interface where the skin and stiffener meet. The specimens including the jagged-pins were made by co-curing process. Diameters of the jagged-pins were 0.3, 0.5 and 0.7 mm. The pin areal densities were set to 0.5 and 2.0% based on the interface area where the skin and stiffener meet. The specimens using 0.3 mm diameter normal (un-jagged) pins with 2.0% areal density were additionally fabricated and tested to investigate the pin shape effect on the pull-off strength. The pull-off strengths of specimens reinforced with 0.5% areal density by 0.3, 0.5, and 0.7 mm diameter pins were 45, 19 and 9% higher than those of un-reinforced specimens, respectively. In case with 2.0% pin areal density, the strengths were 127, 45, and 11% higher than those of un-reinforced specimens, respectively. The test results show that the higher pin areal density results in the higher strength when the pin diameter is the same. When the pin areal density is the same, the smaller pin diameter leads to higher strength. When the joints using jagged-pins and normal pins in 2.0% areal density with 0.3 mm diameter, the joints of jagged-pins showed the 64% higher strength. From the results of this study, it was confirmed that jagged-pin reinforcement can be an effective method for improving the pull-off strength of composite hat-joint.

Effects of Polyimide Passivation Layers and polyvinylalcohol Passivation Layers for Organic Thin-Film Transistors(OTFTs) (폴리이미드 패시베이션과 폴리비닐알콜 패시베이션 레이어 성막이 고성능 유기박막 트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Hwang, Sun-Wook;Kim, Young-Kwan
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.195-198
    • /
    • 2008
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing. In order to form polymeric film as a passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing. In order to investigate by compared with different passivation layer, the other OTFTs is fabricated to passivation by Polyvinylalcohol using spincoating. We can see that two different ways of passivation layer affect electric characteristic of OTFTs. The initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.24cm^2/Vs$, -3V, and $10^6$, respectively. Then after polyimide passivation layer, field effect mobility change from $0.24cm^2/Vs$ to $0.26cm^2/Vs$, threshold voltage from -3V to 1V and on-off current ratio from $10^6$ to $10^6$, respectively. In the case of polyvinylalcohol passivation, the initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.13cm^2/Vs$, 0V, and $10^6$, respectively. Then after polyvinylalcohol passivation layer, field effect mobility changes from $0.13cm^2/Vs$ to $0.13cm^2/Vs$, threshold voltage from 0V to 2V, and on-off current ratio from $10^6$ to $10^5$, respectively.