• Title/Summary/Keyword: Co-Cr alloy

Search Result 293, Processing Time 0.027 seconds

THE EXPERIMENTAL STUDY ON THE EFFECT OF THE INSERTION-WITHDRAWAL COUNT TO THE RETENTIVE CAPACITIES OF SEVERAL Cr-Co ALLOY CLASPS (삽입철거 회수가 수종의 Cr-Co 합금 Clasp 유지력에 미치는 영향에 관한 실험적 연구)

  • Bae Jung-Soo;Lee Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.498-507
    • /
    • 1992
  • This study was to investigate the retentive force changes according to repeated insertion and withdrawal of Cr-Co alloy clasps, commonly used in this country, and the differences in retentive capacities between Aker's clasp and I-bar clasp. The author selected 4 kinds of Cr-Co alloys and Type IV gold alloy, and measured the retentive force changes of each clasp type in undercut depth of 0.25mm and analyzed statistically. The following results were obtained. 1. In both Aker's and I-bar clasps, there were no statistically significant differencies in retentive forces among 4 Cr-Co alloys. 2. Cr-Co alloys exerted greater retentive forces than those of gold alloy, 2 times greater in Aker's clasps and 2.5 times in I-bar clasps. 3. In all test specimens, I-bar clasps exerted greater retentive forces than Aker's clasps. 4. In all test specimens, there were trends of second order relationships in retentive force changes.

  • PDF

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능])

  • Son, D.U.;Jeong, S.H.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF

Study on Base metal Alloy (Base metal Alloy에 관한 고찰(考察))

  • Sung, Hwan-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.53-59
    • /
    • 1985
  • This paper aims to examine baes metal alloy in all its aspects - the roles of elements, the content of every element according to uses, characters, laboratory technique methods and the kind of artificial base metal alloy registered in A.D.A. Specification. The results are as follows; 1. Base metal alloy is used widely bacaues it is rather cheap, but it should be handled appropriately in operating because its quality is bad. 2. Classifying base metal alloy, it is classified into Co-Cr alloy, Ni-Cr alloy, and Ni-Cr-Co alloy according to element, it is classified into partial denture alloy, surgical alloy and crown & bridge alloy according to use. 3. Among elements of base metal alloy, Bellium lowers the melting point of the alloy and increases the strength, but the amount should be limited when it is used because it destroys the organization of a living body. 4. The investments for base metal alloy are ethyl silcate bonded investment and phosphate bonded investment which endure well at high burn out temperature. 5. A.D.A specification No.14 in Kore contains Niranium, Nobilium, regalloy, Ticonium and Vitallium.

  • PDF

Assessment of Tribological Characteristics of CoCrW and CoCrMo Alloys (CoCrW와 CoCrMo 합금의 트라이볼로지 특성 평가)

  • Kwon, Dong-Gyun;Oh, Se-Jin;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.162-169
    • /
    • 2022
  • Cobalt-chromium (CoCr)-based alloys have been used for wear applications because of their excellent mechanical properties and wear resistance. With growing concern over environmental problems, CoCr alloys are expected to be used for various tribological applications in degraded lubrication states. To expand the applicability of the materials, data should be accumulated across a broad spectrum of experimental parameters. In this work, the friction and wear characteristics of cobalt-chromium-tungsten (CoCrW) and cobalt-chromium-molybdenum (CoCrMo) alloys are investigated experimentally. The tests are conducted using a pin-on-reciprocating-plate tribotester in dry lubrication. CoCrW and CoCrMo are used as pin and plate materials to investigate the effect of the counter material. The results show that the friction coefficients between CoCrW and CoCrMo generally range from 0.4 to 0.5. The friction coefficient between the CoCrW pin and plate is found to be slightly small. However, the total wear between the CoCrW pin and plate is found to be the largest. In contrast, the total wear between the CoCrW pin and plate is relatively small. Furthermore, CoCrW may cause a faster wear progression of CoCrMo, especially for the case in which CoCrMo is used as the pin material. The results of this work provide a better understanding of the tribological properties of CoCrW and CoCrMo alloys. In addition, this work provides a practical guideline for the use of CoCrW and CoCrMo from the tribological design viewpoint.

THE STUDY 0F TENS10N CHARACTERISTICS IN ORTHODONTIC WIRES (교정용 철사의 인장 특성에 관한 연구)

  • Park, Dae-Han;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.14 no.2
    • /
    • pp.241-248
    • /
    • 1984
  • The mechanical properties of Cr-Ni alloy of austenitic stainless steel and Co-Cr alloy orthodontic wires were studied in tension. The wires (0.018 inch) were tested in the as-manufactured and heat-treated conditions. Instron type tension testing machine was used for this study. Mean values and standard deviations were computed. The results were as follows; 1. The Cr-Ni orthodontic wires of austenitic stainless steel are generally superior than the Co-Cr orthodontic wires in ultimate tensile strength, In the elongation, however, Co-Cr orthodontic wire are superior than Cr-Ni orthodontic wires. 2. Increase in the degree of strength by heat treatment are more clearly shown in Co-Cr orthodontic wires than Cr-Ni orthodontic wires. And the elongation is decreased by heat treatment in both case. 3. The changes of the degree of strength by cooling method we not clearly shown, but in Cr-Ni orthodontic wires, air cooling are more effective, in Co-Cr orthodontic wires, cooling effect are scarcely shown.

  • PDF

Microstructure and Mechanical Properties of Ni-Cr-Mo Based Dental Cast Iron for Porcelain-Fused-to-Metal Firing (도재소부용 Ni-Cr-Mo계 치과용 합금의 미세조직 및 기계적성질)

  • Choi, D.C.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.3
    • /
    • pp.120-125
    • /
    • 2007
  • The microstructure, mechanical properties and melting range of Ni-Cr-Mo based alloys were investigated to develop Be-free Ni-Cr-Mo base dental alloys for Porcelain-Fused-to-Metal Firing(PFM). All as-cast alloys showed dendritic structure. Rockwell hardness of 20Cr7Mo was increased with addition of Si and Ti. On the contrary, it was decreased with addition of Co. The duplex alloying elemental addition such as 3Co + xTi, 2Si + xCo and 2Si + xTi to 20Cr7Mo resulted in much increase of hardness. Rockwell hardness and compressive strength for 20Cr3CoSiTi or 17Cr6CoSiTi alloy that add Si-Ti had similar values compared to the commercial alloys. Melting range for 20Cr3CoSiTi and 17Cr6CoSiTi alloy that add Si-Ti showed similar or lower than commercial alloys. In conclusion, 20Cr3CoSiTi and 17Cr6CoSiTi alloys can be applied for commercial use.

A STUDY ON THE BOND STRENGTH OF HEAT-CURING ACRYIC RESIN BONDED TO A SURFACE OF CASTED ALLOY (주조 금속 표면과 열 중합 수지 표면간의 결합 강도에 관한 연구)

  • Lee, Yong-Seok;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.620-631
    • /
    • 1996
  • Bonding of resin to cast alloy has traditionally been provided by mechanical retention. But, chemical bonding methods such as silicoating, tin plating, heat treatment, application of 4-META adhesives, have been developed to overcome the problems of the mechanical bonding methods. Silicoating has been used availaby in fixed prosthodontics, but is also reported to be used in removable prosthodontics. The aim of this study is to measure the tensile bond strength between resin and metal, and compare the effect of the type of metal and the grain size of the aluminum oxide on the bond strength, after metal surface roughening, coating of the opaque resin, and curing of heat-curing resin were performed. The test groups were divided into 4 groups according to the cast alloys and the aluminum oxide particles used. Group 1 : Type 4 gold alloy(DM66) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 2 : Type 4 gold alloy(DM66) blasted with $$250{\mu}m\;Al_{2}O_3$$, Group 3 : Co-Cr alloy(Nobilium) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 4 : Co-Cr alloy(Nobilium) blasted with $$250{\mu}m\;Al_{2}O_3$$ * 10 test specimens were made on each group. The specimens were thermocycled, and Instron Universal testing machine was used to measure the tensile bond strength of the finished specimens. The results were as follows : 1. Bond strengths showed that the group of gold alloy blasted with $250{\mu}m$ aluminum oxide particle had higher bond strength, and the group of gold alloy blasted with $50{\mu}m$ aluminum oxide particles had lower bond strength than any of the other groups. 2. Gold alloy had significantly higher bond strength when blasted with $250{\mu}m$ aluminum oxide particles than $50{\mu}m$, but. Co-Cr alloy showed no statistically significant difference between the two particle sizes. 3. When blasted with $50{mu}m$ aluminum oxide particles, Co-Cr alloy showed significantly higher bond strength than gold alloy. And, when blasted with $250{\mu}m$ aluminum oxide particles, gold alloy had significantly higher bond strength than Co-Cr alloy. 4. On the examination of the fractured sites, only the group of Co-Cr alloy blasted with $50{\mu}m$ aluminum oxide particles showed a part of residual opaque resin, but all the samples of the other groups fractured between the resin and the metal.

  • PDF

A STUDY ON THE FLEXURAL BOND STRENGTH OF THE GOLD AND THE Co-Cr ALLOY TO THE DENTURE BASE RESINS (금 합금 및 비 귀금속 합금에 대한 의치상 레진의 결합강도에 관한 연구)

  • Park, Hyun-Joo;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.500-509
    • /
    • 2000
  • In general, the three major oral functions of edentulous patients-mastication, phonation, esthetics-can be rehabilitated by the complete dentures, and both the resin based complete denture and the metal based complete denture are commonly used by many clinicians today. For the sake of many advantages such as the excellent thermal conductivity, low volumetric change, high strength, low risk of fracture and the better patient's adaptation, the metal based complete dentures are indicated to the several cases. But, there are common failures of these type of dentures mainly by the fracture or the debonding between the resin structures and the metal frameworks which is caused by the discrepancies of the flexural strength and the coefficient of thermal expansion. This is aggravated by the water contamination of the interface when exposed to the oral environment and results in the failure of complete denture treatment. So, the purpose of this study is to compare the bond strength and the fracture patterns of the gold alloy based and the Co-Cr alloy based complete dentures using the PMMA resins and the 4-META adhesive resins. The results of this study were as follows. 1. Both to the PMMA resin and the 4-META resin, the flexural bond strength of gold alloy is lower than that of Co-Cr alloy(P<0.05) 2. To the Co-Cr alloy, the bond strength of the 4-META resin is significantly higher than that of PMMA resin(P<0.05). 3. The flexural strength of the group with the mechanical retention form is significantly higher than that of the group without retention form(P<0.05). 4. Comparing with the other groups, the fracture patterns of the group 3 are quite different from the group 1,2,5.

  • PDF

The effect of Zirconium Nitride coating on shear bond strength with denture base resin in Co-Cr alloy and titanium alloy (질화 지르코늄 코팅이 코발트 크롬 합금과 타이타늄 합금에서 의치상 레진과의 전단결합강도에 미치는 영향)

  • Park, Chan;Lee, Kyoung-Hun;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.194-201
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate of Zirconium Nitride (ZrN) coating on shear bond strength with denture base resin in Co-Cr and Ti-6Al-4V alloy. Materials and Methods: Co-Cr and Ti-6Al-4V alloy disks (10 mm in diameter, 2.5 mm in thickness; each other: n = 14) were prepared and divided with 2 groups each other by ZrN coating. After primer was applied to disks surface, denture base resin with diameter 6 mm, height 5 mm was bonded on metal disk surface. After surface roughness was measured by Profiler, shear bond strength was determined with Universal testing machine and analyzed with two-way ANOVA. The specimen surfaces and failure mode were examined using a scanning electron microscope. Results: ZrN coated groups showed significantly higher rough surface than non-coated groups (P < 0.05). Irrespective of alloy materials, shear bond strength of ZrN coated groups were lower than non-coated groups (P < 0.001). The scanning electron microscope (SEM) of ZrN coated groups showed mixed and adhesive fractures. Conclusion: ZrN coating weakened bonding strength between denture base resin and Co-Cr, Ti-6Al-4V alloy.

On the Solubility of Chromium in Cubic Carbides in WC-Co

  • Norgren, Susanne;Kusoffsky, Alexandra;Elfwing, Mattias;Eriksson, Anders
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.338-339
    • /
    • 2006
  • The solubility of Cr in cubic carbides in the systems WC-Co-TaC and WC-Co-ZrC has been determined using equilibrium samples. Thermodynamic calculations were used to design the alloys through extrapolations of Gibbs energy expressions. The alloys were designed to have a microstructure containing the following phases: WC, liquid, $M_7C_3$, graphite and cubic carbide. The alloys were investigated using scanning electron microscopy and analyzed using energy-dispersive X-ray spectrometry. The present work shows how the Cr solubility depends on which cubic carbide former that is present. The WC-Co-Cr-Zr alloy has no detectable amount of Cr whereas the WC-Co-Cr-Ta alloy has 12% Cr in the cubic carbide.

  • PDF