• Title/Summary/Keyword: Co doping effect

Search Result 124, Processing Time 0.024 seconds

Gas Sensing Characteristics and Doping Effect of MoO3Thin Films Sensor (박막형 MoO3가스센서의 가스 감지 특성 및 첨가물의 영향)

  • 황종택;장건익;윤대호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.705-710
    • /
    • 2003
  • MoO$_3$thin films were deposited on electrode of alumina substrates in $O_2$atmosphere by RF reactive sputtering using molybdenum metal target. The deposition was performed at 30$0^{\circ}C$ with 350 W of a forward power in an Ar-O$_2$atmosphere. The working pressure was maintained at 3$\times$10$^{-2}$ torr and all deposited films were annealed at 50$0^{\circ}C$ for 5 hours. The surface morphology of films was observed by using a SEM and crystalline phases were analyzed by using a XRD. To investigate gas sensing characteristics of the doped MoO$_3$thin film, Co, Ni and Pt were used as dopants. The sensing properties were investigated in term of gas concentration under exposure of reducing gases such as H$_2$, NH$_3$and CO at optimum working temperature. Co-doped MoO3 thin film shows the maximum 46.8 % of sensitivity in NH$_3$ and Ni-doped MoO$_3$thin film exhibits 49.7 % of sensitivity in H$_2$.

Electrical Properties of P-ZnO:(Al,N) Co-doped ZnO Films Fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;Kim, Deok-Kyu;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.442-443
    • /
    • 2007
  • Al-N co-doped ZnO films were fabricated on n-Si (100) and homo-buffer layers in the mixture of oxygen and nitrogen at $450^{\circ}C$ by magnetron sputtering. Target was ZnO ceramic mixed with $2wt%Al_2O_3$. XRD spectra show that as-grown and $600^{\circ}C$ annealed films are prolonged along crystal c-axis. However they are not prolonged in (001) plane vertical to c-axix. The films annealed at $800^{\circ}C$ are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. XPS show that Al content hardly varies and N escapes with increasing annealing temperature from $600^{\circ}C\;to\;800^{\circ}C$. The electric properties of as-grown films were tested by Hall Effect with Van der Pauw configuration show some of them to be p-type conduction.

  • PDF

Oxygen Reduction Reaction of La1-xCaxCoO3 of Gas Diffusion Electrode in Alkaline Fuel Cell (알칼리형 연료전지용 La1-xCaxCoO3 기체확산전극의 산소환원반응)

  • Shim, Joong-Pyo;Park, Yong-Suk;Lee, Hong-Ki;Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.992-998
    • /
    • 1996
  • The $La_{0.8}Ca_{0.2}CoO_3$ prepared by a citrate process was shown to have higher oxygen reduction current density and specific activity than $LaCoO_3$, $La_{0.6}Ca_{0.4}CoO_3$. In the cyclic voltammogram, an oxygen desorption peak of a $La_{0.8}Ca_{0.2}CoO_3$+carbon electrode was larger than that of a only carbon electrode. $La_{0.8}Ca_{0.2}CoO_3$ sintered at $900^{\circ}C$ for 5 hours was shown high oxygen reduction current density because of the particle size distribution and sintering effect.

  • PDF

Fabrication and Electrical Properties of Local Damascene FinFET Cell Array in Sub-60nm Feature Sized DRAM

  • Kim, Yong-Sung;Shin, Soo-Ho;Han, Sung-Hee;Yang, Seung-Chul;Sung, Joon-Ho;Lee, Dong-Jun;Lee, Jin-Woo;Chung, Tae-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.61-67
    • /
    • 2006
  • We fabricate local damascene FinFET cell array in sub-60nm feature sized DRAM. The local damascene structure can remove passing-gate-effects in FinFET cell array. p+ boron in-situ doped polysilicon is chosen for the gate material, and we obtain a uniform distribution of threshold voltages at around 0.7V. Sub-threshold swing of 75mV/d and extrapolated off-state leakage current of 0.03fA are obtained, which are much suppressed values against those of recessed channel array transistors. We also obtain a few times higher on-state current. Based on the improved on- and off-state current characteristics, we expect that the FinFET cell array could be a new mainstream structure in sub-60nm DRAM devices, satisfying high density, low power, and high-speed device requirements.

Deposition of ZnO Thin Films by RF Magnetron Sputtering and Cu-doping Effects (RF 마그네트론 스퍼터링에 의한 ZnO박막의 증착 및 구리 도우핑 효과)

  • Lee, Jin-Bok;Lee, Hye-Jeong;Seo, Su-Hyeong;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.654-664
    • /
    • 2000
  • Thin films of ZnO are deposited by using an RF magnetron sputtering with varying the substrate temperature(RT~39$0^{\circ}C$) and RF power(50~250W). Cu-doped ZnO(denoted by ZnO:Cu) films have also been prepared by co-spputtering of a ZnO target on which some Cu-chips are attached. Different substrate materials, such as Si, $SiO_{2}/Si$, sapphire, DLC/Si, and poly-diamond/Si, are employed to compare the c-axial growth features of deposited ZnO films. Texture coefficient(TC) values for the (002)-preferential growth are estimated from the XRD spectra of deposited films. Optimal ranges of RF powers and substrate temperatures for obtaining high TC values are determined. Effects of Cu-doping conditions, such as relative Cu-chip sputtering areas, $O_{2}/(Ar+O_{2})$ mixing ratios, and reactor pressures, on TC values, electrical resistivities, and relative Cu-compositions of deposited ZnO:Cu films have been systematically investigated. XPS study shows that the relative densities of metallic $Cu(Cu^{0})$ atoms and $CuO(Cu^{2+})$-phases within deposited films may play an important role of determining their electrical resistivities. It should be noted from the experimental results that highly resistive(> $10^{10}{\Omega}cm$ ZnO films with high TC values(> 80%) can be achieved by Cu-doping. SAW devices with ZnO(or Zn):Cu)/IDT/$SiO_{2}$/Si configuration are also fabricated to estimate the effective electric-mechanical coupling coefficient($k_{eff}^{2}$) and the insertion loss. It is observed that the devices using the Cu-doped ZnO films have a higher $k_{eff}^{2}$ and a lower insertion loss, compared with those using the undoped films.

  • PDF

Effect of Sintering Temperature and Sb/Bi Ratio on Microstructure and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Co3O4 Varistor (소결온도와 Sb/Bi 비가 ZnO-Bi2O3-Sb2O3-Co3O4 바리스터의 미세구조와 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.969-976
    • /
    • 2011
  • In this study we aims to evaluate the effects of 1/3 mol% $Co_3O_4$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0, and 0.5) system (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. In addition of $Co_3O_4$ in $ZnO-Bi_2O_3-Sb_2O_3$ (ZBSCo), the phase development, density, and microstructure were controlled by Sb/Bi ratio. Pyrochlore on cooling was reproduced in all systems. The more homogeneous microstructure was obtained in ZBSCo (Sb/Bi=1.0) system. In ZBSCo, the varistor characteristics were improved drastically (non-linear coefficient ${\alpha}$=23~50) compared to ZBS. Doping of $Co_3O_4$ to ZBS seemed to form $V^{\cdot}_o$(0.33 eV) as dominant defect. From IS & MS, especially the grain boundary of Sb/Bi=0.5 system is composed of electrically single barrier (0.93 eV) and somewhat sensitive to ambient oxygen with temperature.

Photoreduction of Carbon Dioxide using Graphene Oxide-Titanium Oxide Composite (그래핀 옥사이드와 이산화티타늄 조합을 이용한 이산화탄소의 광환원)

  • Lee, Myung-Kyu;Jang, Jun-Won;Park, Sung-Jik;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.46-51
    • /
    • 2016
  • In this study, we synthesized a combination of graphene oxide (GO) and titanium dioxide (TiO2) and confirm that GO can be used for CO2 photoreduction. TiO2 exhibited highly efficient combination with other conventional electric charges generated by these paration phenomenon for suppression of hole-electron recombination. This improved the efficiency of CO2 photoreduction. The synthetic form of GO-TiO2 used in this study was agraphene sheet surrounded by TiO2 powder. Efficiency and stability were enhanced by combination of GO and TiO2. In a CO2 photoreduction experiment, the highest CO conversion rate was 0.652 μmol/g·h in GO10-TiO2 (2.3-fold that of pure TiO2) and the highest CH4 production rate was 0.037 μmol/g·h in GO0.1-TiO2 (2.4-fold that of pure TiO2). GO enhances photocatalytic efficiency by functioning as a support and absorbent, and enabling charge separation. With increasing GO concentration, the CH4 level decreases to~45% due to decreased transfer of electrons. In this study, TiO2 together with GO yielded a different result than the normal doping effect and selective CO2 photoreduction.

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process

  • Cho, Sung-Haeng;Choi, Yong-Mo;Kim, Hyung-Jun;Jeong, Yu-Gwang;Jeong, Chang-Oh;Kim, Shi-Yul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit

Effect of Co-doping in Indium-Zinc-Tin Oxide based transparent conducting oxides sputtering target

  • Seo, Han;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Won, Ju-Yeon;Nam, Tae-Bang;Ju, Byeong-Gwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • ITO에 사용되는 주된 재료인 인듐의 bixbyite 구조는 TCOs의 전기적 특성에서 매우 중요한 것으로 알려져 있다. 때문에 인듐의 Bixbyite구조를 유지하면서 인듐의 사용량을 줄이기 위해 최적의 Solubility limit에 관해 연구하였다. 이를 위해 In2O3-ZnO-SnO2의 삼성분계 기본 조성에 두가지 물질을 추가로 첨가하여 첨가량에 따른 Solubility limit을 연구하였다. Solubility limit의 측정을 위해 X-ray Diffractometer(XRD)를 사용하였으며, 첨가 원소의 양이 증가할수록 TCOs target의 Latice parameter값은 작아졌다, SEM을 통한 미세구조의 관찰로 원소첨가에 따른 샘플의 소결에너지 변화를 분석할 수 있었다. 제작된 시편의 정성분석 및 Chemical binding Energy를 측정하기 위해 X-ray Photo Spectroscopy (XPS)를 이용하였으며, 전기적인 특성 측정을위해 4-Point prove mesurement 방법을 사용하였다.

  • PDF

Effects of Codoping with Fluorine on the Properties of ZnO Thin Films

  • Heo, Young-Woo;Norton, D.P.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.738-742
    • /
    • 2006
  • We report on the effects of co-doping with fluorine on properties of ZnO thin films grown by pulsed-laser deposition. The transport characteristics of Ag-F and Li-F codoped ZnO films were determined by Hall-effect measurements at room temperature. Ag-F codoped ZnO films showed n-type semiconducting behaviors. An ambiguous carrier type was observed in Li-F codoped ZnO films grown at a temperature of 500$^{\circ}C$ with the oxygen pressures of 20 and 200 mTorr. The qualities of the codoped ZnO films were studied by X-ray diffraction, atomic force microscopy, X-ray photoemission spectroscopy, and photoluminescence.