• Title/Summary/Keyword: Co doping effect

Search Result 126, Processing Time 0.036 seconds

Order-disorder structural tailoring and its effects on the chemical stability of (Gd, Nd)2(Zr, Ce)2O7 pyrochlore ceramic for nuclear waste forms

  • Wang, Yan;Wang, Jin;Zhang, Xue;Li, Nan;Wang, Junxia;Liang, Xiaofeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2427-2434
    • /
    • 2022
  • Series of unequal quantity Nd/Ce co-doped ceramic nuclear waste forms, (Gd, Nd)2(Zr, Ce)2O7, were prepared to tailor its ordered pyrochlore or disordered fluorite structure. The phase transition, microtopography, and elemental composition of the ceramic samples were systematically investigated, especially the effect of order-disorder structure on the chemical stability. It was confirmed that unequal quantity of Nd/Ce could synchronously replace the Gd/Zr-sites of Gd2Zr2O7. And the phase transition of order-disorder structure could be successfully tailored by regulating the average cationic radius ratio of (Gd, Nd)2(Zr, Ce)2O7 series. The elements of Gd, Nd, Zr, and Ce are uniformly distributed in the ordered or disordered structures. The MCC-1 leaching results showed that (Gd, Nd)2(Zr, Ce)2O7 pyrochlore ceramic nuclear waste forms had excellent chemical stability, whose elements' normalized leaching rates were as low as 10-4-10-7 g·m-2·d-1 after 7 days. In particular, the chemical stability of disordered structure was superior to that of ordered structure. It was proposed that the force constant and the closest packing were changed with the structure transformation resulting the chemical stability difference.

The Effect of Zn/Sn Different Raito of InZnSnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터를 사용하여 증착한 IZTO 박막의 Zn/Sn 비율에 따른 효과)

  • Kim, Ki Hwan;Putri, Maryane;Koo, Chang Young;Lee, Jung-A;Kim, Jeong-Joo;Lee, Hee Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.591-596
    • /
    • 2013
  • Indium Zinc Tin Oxide (IZTO) thin films were developed as an alternative to Indium Tin Oxide (ITO) thin films. ITO material which has been acknowledged with its low resistivity and optical transparency of 85-90% has been used as major transparent conducting oxide (TCO) materials. However, due to the limited source, high price, and instability problems at high temperature of indium, many researches has been focused on indium-saving TCO materials. Mason Group of Northwestern University was reported to expand the solubility limit up to 40% by co-doping with 1:1 ratio of $Zn^{+2}$ and $Sn^{+4}$ ions. In this study, the properties of IZTO thin films corresponding to Zn/Sn different ratio were investigated. In addition, the effect of substrate temperature variable to the structural, optical and electrical properties of IZTO thin films was investigated.

Bending Characteristics Change of Long-Period fiber Grating due to Co-doping of Boron for Optical fiber Sensors (광섬유 센서 구성을 위한 보론 첨가에 따른 장주기 광섬유 격자의 구부림 특성 변화)

  • Moon, Dae-Seung;Chung, Young-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.339-342
    • /
    • 2005
  • In long-period fiber grating (LPFG) to be made up optical fiber sensors, resonance coupling occurs between the forward-propagating core mode and cladding modes at the wavelength that satisfy the Phase matching condition. The resonance wavelength and the coupling strength depends strongly on the external environment like temperature, strain, and ambient index. These characteristics can be utilized for various applications as optical fiber sensors. fabrication of optical fiber gratings is typically based on the photosensitivity effect, i.e. the permanent change of the refractive index upon irradiation of the UV beam, and therefore, fabrication of the optical fiber with high phososensitivity is an important part of the research on optical fiber gratings. In this work, we measured the effort of to-doping of boron on the index difference between the core and cladding of the optical fiber and the sensitivity of the LPFC to the temperature and bending changes. We observed that the index difference between the core and the cladding decreased by $(1.69{\times}10^{-4}/SCCM)$ and the temperature sensitivity of the resonance wavelength shirt decreased by $(0.01145nm/^{\circ}C/SCCM)$. The dependence or the bending-induced changes or the transmission characteristics of LPFG on the tore-cladding index difference was investigated experimentally. The measurement results indicate that the bending sensitivity increases as the index difference decreases.

Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water Gas Shift Reaction (수성가스전이반응(Water Gas Shift Reaction)을 위한 Ce 첨가에 따른 Cu/Mn 촉매의 활성 연구)

  • PARK, JI HYE;IM, HYO BEEN;HWANG, RA HYUN;BAEK, JEONG HUN;KOO, KEE YOUNG;YI, KWANG BOK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Cu/Mn/Ce catalysts for water gas shift (WGS) reaction were synthesized by urea-nitrate combustion method with the fixed molar ratio of Cu/Mn as 1:4 and 1:1 with the doping concentration of Ce from 0.3 to 0.8 mol%. The prepared catalysts were characterized with SEM, BET, XRD, XPS, $H_2$-TPR, $CO_2$ TPD, $N_2O$ chemisorption analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The Cu/Mn(CM) catalysts formed Cu-Mn mixed oxide of spinel structure ($Cu_{1.5}Mn_{1.5}O_4$) and manganese oxides ($MnO_x$). However, when a small amount of Ce was doped, the growth of $Cu_{1.5}Mn_{1.5}O_4$ was inhibited and the degree of Cu dispersion were increased. Also, the doping of Ce on the CM catalyst reduced the reduction temperature and the base site to induce the active site of the catalyst to be exposed on the catalyst surface. From the XPS analysis, it was confirmed that maintaining the oxidation state of Cu appropriately was a main factor in the WGS reaction. Consequently, Ce as support and dopant in the water gas shift reaction catalysts exhibited the enhanced catalytic activities on CM catalysts. We found that proper amount of Ce by preparing catalysts with different Cu/Mn ratios.

Effect of Tm2O3 addition on dielectric property of barium titanate ceramics for MLCCs (Tm2O3 첨가가 MLCC용 $BaTiO3 유전특성에 미치는 영향)

  • Kim, Jin-Seong;Lee, Hee-Soo;Kang, Do-Won;Kim, Jeong-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.25-29
    • /
    • 2010
  • Thulium oxide-doped barium titanate ceramics for MLCCs with perovskite structure were prepared by a sintering process at $1320^{\circ}C$ for 2 h in a reduced atmosphere. The effect of $Tm_2O_3$ addition on dielectric property of barium titanate ceramics has been studied in terms of their microstructures. Moreover, the phase identification of the dielectric specimens was conducted to define the secondary phase (pyrochlore). The specimen doped with 1 mol% $Tm_2O_3$ exhibited the highest dielectric constant. However, the dielectric constants of specimens with more than 2 mol% $Tm_2O_3$ to $BaTiO_3$ were the lower values than that of 1 mol% doped one. The grain size and the formation of pyrochlore phase associated with the dielectric properties were examined through morphology development and the structural analysis. Furthermore, these data were compared with the property of the dielectric material doped with $Er_2O_3$. It could be concluded that the dielectric property of ceramic capacitors were attributed to the change of pyrochlore phase and the tetragonality of $BaTiO_3$ with doping.

Maximizing TPBs through Ni-self-exsolution on GDC based composite anode in solid oxide fuel cells

  • Tan, Je-Wan;Lee, Dae-Hui;Kim, Bo-Gyeong;Kim, Ju-Seon;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.1-402.1
    • /
    • 2016
  • The performance of solid oxide fuel cells (SOFCs) is directly related to the electrocatalytic activity of composite electrodes in which triple phase boundaries (TPBs) of metallic catalyst, oxygen ion conducting support, and gas should be three-dimensionally maximized. The distribution morphology of catalytic nanoparticle dispersed on external surfaces is of key importance for maximized TPBs. Herein in situ grown nickel nanoparticle onto the surface of fluorite oxide is demonstrated employing gadolium-nickel co-doped ceria ($Gd0.2-xNixCe0.8O2-{\delta}$, GNDC) by reductive annealing. GNDC powders were synthesized via a Pechini-type sol-gel process while maximum doping ratio of Ni into the cerium oxide was defined by X-ray diffraction. Subsequently, NiO-GNDC composite were screen printed on the both sides of yttrium-stabilized zirconia (YSZ) pellet to fabricate the symmetrical half cells. Electrochemical impedance spectroscopy (EIS) showed that the polarization resistance was decreased when it was compared to conventional Ni-GDC anode and this effect became greater at lower temperature. Ex situ microstructural analysis using scanning electron microscopy after the reductive annealing exhibited the exsolution of Ni nanoparticles on the fluorite phases. The influence of Ni contents in GNDC on polarization characteristics of anodes were examined by EIS under H2/H2O atmosphere. Finally, the addition of optimized GNDC into the anode functional layer (AFL) dramatically enhanced cell performance of anode-supported coin cells.

  • PDF

Humidity Effect on the Characteristics of the Proton Conductor Based on the BaR0.5+xTa0.5-xO3-δ (R=Rare Earth) System (BaR0.5+xTa0.5-xO3-δ (R=희토류 금속)계 Proton 전도체 특성에 미치는 수분의 영향)

  • Choi, Soon-Mok;Seo, Won-Sun;Jeong, Seong-Min;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.290-296
    • /
    • 2008
  • $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structures which have been reported as proton conductors over $600^{\circ}C$ were studied. The $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure is known to be more easily synthesized and has better stability than normal $ABO_3$ perovskite structure. And it is stable at about $800^{\circ}C$ in the $CO_2$ atmosphere, whereas the $BaCeO_3$ perovskite is easily decomposed into carbonate. In addition, this $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure could simply produce oxygen vacancies within their structure not by introducing additional doping oxides but by just controling the molar ratio of $B'^{+3}$ and $B"^{+5}$ metal ions in the B site. Hence it is easy to design the structure which shows highly sensitive electrical conductivity to humidity. In this study, the single phase boundary of $BaR_{0.5+x}Ta_{0.5-x}O_{3-{\delta}}$(R = rare earth) complex perovskite structures and it's phase stability were investigated with changes in composition, x. And the humidity dependance of electrical conductivity at different $P_{H2O}$ conditions was investigated.

Magnetic Properties of FePt:C Nanocomposite Film

  • Ko, Hyun-Seok;A. Perumal;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.220-221
    • /
    • 2003
  • Equiatomic FePt and CoPt alloy thin films have received considerable attention as possible magnetic and magneto-optic recording because of their high magnetic anisotropy energy and high coercivity. The high coercivity in these thin films is due to the presence of finely dispersed ordered FePt phase mixed with disordered FePt phase. However, a high temperature treatment, either substrate heating during deposition or post annealing, is needed to obtain the ordered L1$\_$0/ phase with high value of magneto crystalline anisotropy. Recent microstructural studies on these films suggest that the average grain size ranges from 10-50 nm and the grains are magnetically coupled between each other. On the other hand, the ultrahigh-density magnetic recording media with low media noise imposes the need of a material, which consists of magnetically isolated grains with size below 10 nm. The magnetic grain isolation can be controlled by the amount of additional non-magnetic element in the system which determines the interparticle separation and therefore the interparticle interactions. Recently, much research work has been done on various non-magnetic matrices. Preliminary studies showed that the samples prepared in B$_2$O$_3$ and Carbon matrices have shown strong perpendicular anisotropy and fine grain size down to 4nm, which suggest these nanocomposite films are very promising and may lead to the realization of a magnetic medium capable of recording densities beyond 1 Tb/in$^2$. So, in this work, the effect of Carbon doping on the magnetic properties of FePt nanoparticles were investigated.

  • PDF

Effect of PbO on Microwave Dielectric Properties of (Pb, Ca) (Fe, Nb, Sn) O3 Ceramics

  • Yoon, Seok-Jin;Park, Ji-Won;Kang, Chong-Yun;Kim, Hyun-Jai;Jung, Hyung-Jin;Sergey Kucheiko;Cho, Bong-Hee
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.249-253
    • /
    • 1998
  • The influence of PbO additive on dielectric properties and sintering behavior of $(Pb_{0.46}Ca_{0.55})$ {$(Fe__1/2}Nb_{1/2}){0.9}Sn_{{0.1}$}$O_3$ ceramics has been investigated. The incorporation of a limited excess PbO ($\leq$2.0 wt. %) in the starting materials is quite beneficial for densification in the temperature range of 1150~$1175^{\circ}C$ in air. At a small doping level (0.8 wt. %) the ceramics prepared from powders calcined at $900^{\circ}C$ showed the best dielectric properties. The dielectric constants ($\varepsilon_r$) and Q.f were found to be 85.8~85.6 and 8530~8600 GHz, respectively. The temperature coefficient of resonant frequency ($\tau_f$) varied in the range of -2~4 $ppm/^{\circ}C$. Examination of the microstructure as well as analysis of the second phases in these materials revealed the presence of the pyrochlore-type phase which is detrimental to the dielectrics.

  • PDF

Electrical, Optical and Structural Properties of ZrO2 and In2O3 Co-sputtered Electrdoes for Organic Photovoltaics (OPVs)

  • Cho, Da-Young;Shin, Yong-Hee;Chung, Kwun-Bum;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.473.1-473.1
    • /
    • 2014
  • We report on the characteristics of Zr-doped $In_2O_3$ (IZrO) films prepared by DC-RF magnetron cosputtering of $In_2O_3$ and $ZrO_2$ targets for use as a transparent electrode for high efficient organic solar cells (OSCs). The effect of $ZrO_2$ doping power on electrical, optical, structural, and surface morphology of the IZrO film was investigated in detail. At optimized $ZrO_2$ RF power of 50 W, the IZrO film exhibited a low sheet resistance of 20.71 Ohm/square, and a high optical transmittance of 83.9 %. Furthermore, the OSC with the IZrO anode showed a good cell-performance: fill factor of 61.71 %, short circuit current (Jsc) of $8.484mA/cm^2$, open circuit voltage (Voc) of 0.593 V, and power conversion efficiency (PCE) of 3.106 %. In particular, the overall OSC characteristics of the cell with the IZrO anode were comparable to those of the OSC with the conventional Sn-doped $In_2O_3$ (FF of 65.03 %, Jsc of $8.833mA/cm^2$, Voc of 0.608 V, PCE of 3.495 %), demonstrating that the IZrO anode is a promising alternative to ITO anode in OSCs.

  • PDF