• Title/Summary/Keyword: Co 박막

Search Result 1,457, Processing Time 0.022 seconds

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection (고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조)

  • Jae Han Chung;Yun-Haeng Cho;Junho Hwang;Su hyeong Lee;Seunggi Lee;See-Hyung Park;Sungwoo Sohn;Donghwi Cho;Kwangjae Lee;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

Growth of Leaf Lettuce as Affected by Light Quality of LED in Closed-Type Plant Factory System (완전제어형 식물공장시스템에서 LED 광질에 대한 잎상추의 생육)

  • Cha, Mi-Kyung;Cho, Ju-Hyun;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • The objective of this study was to know the growth response and light use efficiency of leaf lettuce (Lactuca sativa L.) 'Yorum Cheongchukmyeon' (green leaf lettuce) and 'Hongyom Jeokchukmyeon' (red leaf lettuce) under different RGB (Red:Green:Blue) ratio in a closed-type plant factory system. The plants were hydroponically cultured with a 12-h photoperiod at $20{\sim}25^{\circ}C$, 60~70% RH and 600~900 ${\mu}mol{\cdot}mol^{-1}$ $CO_2$. The light treatments were combined in three colors LEDs (red, blue, and white) and RGB ratios (1 : 4 : 5, 5 : 0 : 5, 5 : 2 : 3, 7 : 0 : 3, 7 : 1 : 2, and 8 : 1 : 1), however, as the light intensities of treatments were different. Growth characteristic response in both lettuces were significantly as affected by interaction between cultivar and light quality, when they were grown under different light quality conditions. Plant heights of green and red leaf lettuce were the lowest in 1 : 4 : 5 and 8 : 1 : 1, respectively. The highest length and number of leaf were showed 8 : 1 : 1 and 7 : 0 : 3 for the green and 5 : 2 : 3 and 8 : 1 : 1 for the red, respectively. Shoot dry weights of green and red leaf lettuce were the heaviest in 7 : 0 : 3 and 8 : 1 : 1, respectively. Leaf width and leaf shape index were significant about cultivar and light quality. Leaf widths of green and red leaf lettuce were the largest in 8 : 1 : 1 and 5 : 2 : 3, respectively. Leaf shape index of green and red leaf lettuce were the largest in 1 : 4 : 5 and 1 : 4 : 5, respectively. Shoot fresh weight and light use efficiency were significant about cultivar and light quality. Shoot fresh weights of green and red leaf lettuce were the heaviest in 7 : 0 : 3 and 8 : 1 : 1, respectively. Light use efficiencies of green and red leaf lettuce were the highest in 7 : 0 : 3 and 5 : 0 : 5, respectively. These results suggested that the ratio of RGB was 5~7 : 0~2 : 1~3 to cultivate leaf lettuce in a plant factory system.

Extraction of Primary Factors Influencing Dam Operation Using Factor Analysis (요인분석 통계기법을 이용한 댐 운영에 대한 영향 요인 추출)

  • Kang, Min-Goo;Jung, Chan-Yong;Lee, Gwang-Man
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.769-781
    • /
    • 2007
  • Factor analysis has been usually employed in reducing quantity of data and summarizing information on a system or phenomenon. In this analysis methodology, variables are grouped into several factors by consideration of statistic characteristics, and the results are used for dropping variables which have lower weight than others. In this study, factor analysis was applied for extracting primary factors influencing multi-dam system operation in the Han River basin, where there are two multi-purpose dams such as Soyanggang Dam and Chungju Dam, and water has been supplied by integrating two dams in water use season. In order to fulfill factor analysis, first the variables related to two dams operation were gathered and divided into five groups (Soyanggang Dam: inflow, hydropower product, storage management, storage, and operation results of the past; Chungju Dam: inflow, hydropower product, water demand, storage, and operation results of the past). And then, considering statistic properties, in the gathered variables, some variables were chosen and grouped into five factors; hydrological condition, dam operation of the past, dam operation at normal season, water demand, and downstream dam operation. In order to check the appropriateness and applicability of factors, a multiple regression equation was newly constructed using factors as description variables, and those factors were compared with terms of objective function used in operation water resources optimally in a river basin. Reviewing the results through two check processes, it was revealed that the suggested approach provided satisfactory results. And, it was expected for extracted primary factors to be useful for making dam operation schedule considering the future situation and previous results.

Growth Characteristics of Common Ice Plant (Mesembryanthemum crystallinum L.) on Nutrient Solution, Light Intensity and Planting Distance in Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 배양액, 광도 및 재식거리에 따른 Common Ice Plant의 생육 특성)

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.89-94
    • /
    • 2016
  • This study was conducted to determine the optimum nutrient solution, pH, irrigation interval, light intensity and planting density to growth of common ice plant (Mesembryanthemum crystallinum L.) in a closed-type plant production system. Three-band radiation type fluorescent lamps with a 12-h photoperiod were used. Nutrient film technique systems with three layers were used for the plant growth system. Environmental conditions, such as air temperature, relative humidity and $CO_2$ concentration were controlled by an ON/OFF operation. Treatments were comparison of the nutrient solution of Horticultural Experiment Station in Japan (NHES) and the nutrient solution of Jeju National University (NJNU), pH 6.0 and 7.0, irrigation interval 5 min and 10 min, light intensity 90 and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and within-row spacing 10 cm, 15 cm, 20 cm and 25 cm with between-row spacing 15 cm. Optimum macronutrients were composed N 7.65, P 0.65, K 4.0, Ca 1.6 and Mg $1.0mM{\cdot}L^{-1}$. There were no significant interactions between pH 6.0 and 7.0 about shoot fresh weight and shoot dry weight of common ice plant. Irrigation interval 5 min and 10 min was also the same result. Shoot fresh weight and shoot dry weight were highest at $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Shoot fresh weight and shoot dry weight were decreased according to increasing the planting density. From the above results, we concluded that optimum nutrient solution, optimum levels of pH, irrigation interval, light intensity and planting density were 6.0-7.0 and 10 min, $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and $15{\times}15cm$, respectively for growth of common ice plant in a closed-type plant production system.

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.