• Title/Summary/Keyword: Co/Ti silicide

Search Result 48, Processing Time 0.028 seconds

Improvement of Thermal Stability of Nickel Silicide Using Co-sputtering of Ni and Ti for Nano-Scale CMOS Technology

  • Li, Meng;Oh, Sung-Kwen;Shin, Hong-Sik;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.252-258
    • /
    • 2013
  • In this paper, a thermally stable nickel silicide technology using the co-sputtering of nickel and titanium atoms capped with TiN layer is proposed for nano-scale metal oxide semiconductor field effect transistor (MOSFET) applications. The effects of the incorporation of titanium ingredient in the co-sputtered Ni layer are characterized as a function of Ti sputtering power. The difference between the one-step rapid thermal process (RTP) and two-step RTP for the silicidation process has also been studied. It is shown that a certain proportion of titanium incorporation with two-step RTP has the best thermal stability for this structure.

Formation Mechanism of Cobalt Silicide by Solid Phase Reaction in Co/Ti/Si system (Co/Ti/Si 계에서 고상반응에 의한 Cobalt Silicide 형성기구 고찰)

  • Lee, Seung-Heon;Bae, Jun-Cheol;Sin, Dong-Won;Park, Chan-Gyeong
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.808-816
    • /
    • 1996
  • (100) Si 기판위에 전자 빔 증착법을 이용하여$ 90\AA$두께의 Ti과 $120\AA$두께의 Co를 순차적으로 증착시켰다. 그 후 질소분위기하의 $350-900^{\circ}C$온도구간에서 급속열처리함으로써 (100) Si 기판위의 Co/Ti 이중 박막의 실리사이드화 반응이 일어나게 했으며 이를 XRD, AES, TEM을 이용하여 분석하였다. $500^{\circ}C$이하의 온도에서는 Co원자들이 Ti층쪽으로 빠르게 확산하여 Si와 반응하기 이전에 Ti원자들과 상호 혼합되어 어떠한 실리사이드도 형성되지 않았다. $500^{\circ}C$에서 열처리된 시편의 고분해능전자현미경 영상을 통해 Co-Ti 혼합층과 실리콘 기판과의 계면에서 (100)Si 기판과 정합관계를 가지는 CoSi2가 형성되었음을 확인했다. $600^{\circ}C$열처리에 의해 Co-Ti-Sitka성분 실리사이드가 형성되기 시작하였으며, 형성된 삼성분 실리사이드는 Ti의 out-diffusion에 의해 $900^{\circ}C$ 이상의 온도에서는 불안정하였다. Co/Ti이중 박막에 의해 형성된 CoSi2는 실리콘 기판과 평탄한 계면을 가지며 실리콘 기판에 대해 (100)우선성장방위를 가졌다.

  • PDF

Nickel Silicide Nanowire Growth and Applications

  • Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.215-216
    • /
    • 2013
  • The silicide is a compound of Si with an electropositive component. Silicides are commonly used in silicon-based microelectronics to reduce resistivity of gate and local interconnect metallization. The popular silicide candidates, CoSi2 and TiSi2, have some limitations. TiSi2 showed line width dependent sheet resistance and has difficulty in transformation of the C49 phase to the low resistive C54. CoSi2 consumes more Si than TiSi2. Nickel silicide is a promising material to substitute for those silicide materials providing several advantages; low resistivity, lower Si consumption and lower formation temperature. Nickel silicide (NiSi) nanowire (NW) has features of a geometrically tiny size in terms of diameter and significantly long directional length, with an excellent electrical conductivity. According to these advantages, NiSi NWs have been applied to various nanoscale applications, such as interconnects [1,2], field emitters [3], and functional microscopy tips [4]. Beside its tiny geometric feature, NW can provide a large surface area at a fixed volume. This makes the material viable for photovoltaic architecture, allowing it to be used to enhance the light-active region [5]. Additionally, a recent report has suggested that an effective antireflection coating-layer can be made with by NiSi NW arrays [6]. A unique growth mechanism of nickel silicide (NiSi) nanowires (NWs) was thermodynamically investigated. The reaction between Ni and Si primarily determines NiSi phases according to the deposition condition. Optimum growth conditions were found at $375^{\circ}C$ leading long and high-density NiSi NWs. The ignition of NiSi NWs is determined by the grain size due to the nucleation limited silicide reaction. A successive Ni diffusion through a silicide layer was traced from a NW grown sample. Otherwise Ni-rich or Si-rich phase induces a film type growth. This work demonstrates specific existence of NiSi NW growth [7].

  • PDF

Fabrication and Electrical Characteristics of $p^{+}$-n Ultra Shallow Junction Diode with Co/Ti Bilayer Silicide (Co/Ti 이중막 실리사이드를 이용한 $p^{+}$-n극저접합 다이오드의 제작과 전기적 특성)

  • Chang, Gee-Keun;Ohm, Woo-Yong;Chang, Ho-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.288-292
    • /
    • 1998
  • The p*-n ultra shallow junction diode with Co/Ti bilayer silicide was formed by ion implantation of $BF_{2}$ energy : 30KeV, dose : $5\times10^{15}cm^{-2}$] onto the n-well Si(100) region and RTA-silicidation of the evaporated Co($120\AA$)/Ti($40\AA$) double layer. The fabricated diode exhibited ideality factor of 1.06, specific contact resistance of $1.2\times10^{-6}\Omega\cdot\textrm{cm}^2$ and leakage current of $8.6\muA/\textrm{cm}^2$(-3V) under the reverse bias of 3V. The sheet resistance of silicided emitter region, the boron concentration at silicide/Si interface and the junction depth including silicide layer of ($500\AA$ were about $8\Omega\Box$, $6\times10^{19}cm^{-3}$, and $0.14\mu{m}$, respectively. In the fabrication of diode, the application of Co/Ti bilayer silicide brought improvement of ideality factor on the current-voltage characteristics as well as reduction of emitter sheet resistance and specific contact resistance, while it led to a little increase of leakage current.

  • PDF

PECVD of Blanket $TiSi_2$ on Oxide Patterned Wafers (산화막 패턴 웨이퍼 위에 플라즈마 화학증착법을 이용한 균일 $TiSi_2$ 박막형성에 관한 연구)

  • Lee, Jaegab
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.153-161
    • /
    • 1992
  • A plasma has been used in a high vaccum, cold wall reactor for low temperature deposition of C54 TiSi2 and for in-situ surface cleaning prior to silicide deposition. SiH4 and TiCl4 were used as the silicon and titanium sources, respectively. The deposited films had low resistivities in the range of 15~25 uohm-cm. The investigation of the experimental variables' effects on the growth of silicide and its concomitant silicon consumption revealed that and were the dominant species for silicide formation and the primary factors in silicon consumption were gas composition ratio and temperature. Increasing silane flow rate from 6 to 9 sccm decreased silicon consumption from 1500 A/min to less than 30 A/min. Furthermore, decreasing the temperature from 650 to $590^{\circ}C$ achieved blanket silicide deposition with no silicon consumption. A kinetic model of silicon consumption is proposed to understand the fundamental mechanism responsible for the dependence of silicon consumption on SiH4 flow rate.

  • PDF

A Study of Titanium and Cobalt Silicide (Titanium과 Cobalt silicide의 연구)

  • Kim, Sang-Yong;Yu, Seok-Bin;Seo, Yong-Jin;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.122-126
    • /
    • 1989
  • A composite polycide struoture consisting of refractory metal and noble metal silicide film on top of polysilicon bas been considered as a replacement for polysilicon as a gate electrode and Interconnect line in MOSFET integrated circuits. In this paper presents divice characteristics of NOS with $TiSi_2/n^+$polyoide and $CoSi_2/n^+$polycide gate. Also, evaporated Ti,Co films on polysilicon has been annealed by RTA and furnace annealing in $N_2$ abient at temperature of $400^{\circ}C-1000^{\circ}C$. The Ti-,Co-silioide formation is characterized by 4-point probe, silicide growth rate and Its reproductivity bas been examined by SEM.

  • PDF

Effects of Ti and TiN Capping Layers on Cobalt-silicided MOS Device Characteristics in Embedded DRAM and Logic

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Choy, Jun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.782-786
    • /
    • 2001
  • Cobalt silicide has been employed to Embedded DRAM (Dynamic Random Access Memory) and Logic (EDL) as contact material to improve its speed. We have investigated the influences of Ti and TiN capping layers on cobalt-silicided Complementary Metal-Oxide-Semiconductor (CMOS) device characteristics. TiN capping layer is shown to be superior to Ti capping layer with respect to high thermal stability and the current driving capability of pMOSFETs. Secondary Ion Mass Spectrometry (SIMS) showed that the Ti capping layer could not prevent the out-diffusion of boron dopants. The resulting operating current of MOS devices with Ti capping layer was degraded by more than 10%, compared with those with TiN.

  • PDF

Characteristics of Cobalt Silicide by Various Film Structures (다양한 박막층을 채용한 코발트실리사이드의 물성)

  • Cheong, Seong-Hwee;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.279-284
    • /
    • 2003
  • The $CoSi_2$ process is widely employed in a salicide as well as an ohmic layer process. In this experiment, we investigated the characteristics of $CoSi_2$ films by combinations of I-type (TiN 100$\AA$/Co 150$\AA$), II-type(TiN 100$\AA$/Co 150$\AA$/Ti 50$\AA$), III-type(Ti 100$\AA$/Co 150$\AA$/Ti 50$\AA$), and IV-type(Ti 100$\AA$/Co 150$\AA$/Ti 100$\AA$). Sheet resistances of $CoSi_2$ show the lowest resistance with 2.9 $\Omega$/sq. in a TiN/Co condition and much higher resistances in conditions simultaneously applying Ti capping layers and Ti interlayers. Though we couldn't observe a $CoSi_2$roughness dependence on the film stacks from RMS values, Ti capping layers turned into 78∼94$\AA$ thick TiN layers of (200) preferred orientation at $N_2$ambient. In addition, Ti interlayers helped to form the epitaxial $CoSi_2$with (200) preferred orientation and ternary compounds of Co-Ti-Si. We propose that film structures of II-type and III-type may be appropriate in the salicide process and the ohmic layer process from the viewpoint of Co diffusion kinetics and the CoSi$_2$epitaxy.

Silicide Formation of Atomic Layer Deposition Co Using Ti and Ru Capping Layer

  • Yoon, Jae-Hong;Lee, Han-Bo-Ram;Gu, Gil-Ho;Park, Chan-Gyung;Kim, Hyung-Jun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.202-206
    • /
    • 2012
  • $CoSi_2$ was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt ($Co(iPr-AMD)_2$) as a precursor and $NH_3$ as a reactant; this reaction produced a highly conformal Co film with low resistivity ($50\;{\mu}{\Omega}cm$). To prevent oxygen contamination, $ex-situ$ sputtered Ti and $in-situ$ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and $O_2$ as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that $CoSi_2$ was in a poly-crystalline state and formed at over $800^{\circ}C$ of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, $CoSi_2$ about 40 nm thick was formed while the $SiO_x$ interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of $CoSi_2$.

Molybdenum and Cobalt Silicide Field Emitter Arrays

  • Lee, Jong-Duk;Shim, Byung-Chang;Park, Byung-Gook;Kwon, Sang-Jik
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 2000
  • In order to improve both the level and the stability of electron emission, Mo and Co silicides were formed from Mo mono-layer and Ti/Co bi-layers on single crystal silicon field emitter arrays (FEAs), respectively. Using the slope of Fowler-Nordheim curve and tip radius measured from scanning electron microscopy (SEM), the effective work function of Mo and Co silicide FEAs were calculated to be 3.13 eV and 2.56 eV, respectively. Compared with silicon field emitters, Mo and Co silicide exhibited 10 and 34 times higher maximum emission current, 10 V and 46 V higher device failure voltage, and 6.1 and 4.8 times lower current fluctuation, respectively. Moreover, the emission currents of the silicide FEAs depending on vacuum level were almost the same in the range of $10^{-9}{\sim}10^{-6}$ torr. This result shows that silicide is robust in terms of anode current degradation due to the absorption of air molecules.

  • PDF