• Title/Summary/Keyword: Co(III)

Search Result 959, Processing Time 0.028 seconds

Mediated Electrochemical Oxidation of High Molecular Weight PEGs by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 고분자량 폴리에텔렌글리콜류의 매개전해산화)

  • Park, Seung-Cho;Kim, Ik-Seong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.206-211
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) of polyethylene glycols (PEGs) of molecular weight of 1000, 4000 and 20000, was carried out on both platinum (Pt) and titanium-iridium electrodes in 8.0 M nitric acid solution containing 0.5 M Fe(II) and Co(II) ion. The electrochemical parameters such as current densities, kinds of electrode, electrolyte concentration and removal efficiency were investigated in both Fe(III)/Fe(II) and Co(III)/Co(II) redox systems. The PEGs was decomposed into carbon dioxide by MEO in Fe(III)/Fe(II) and Co(III)/Co(II) redox system during 180 min and 210 min at the current density of $0.67A/cm^2$ on the Pt electrode. Removal efficiency of PEGs by MEO was better in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, indicating mediated electrochemical removal efficiency was 100%.

Studies on Electroanalytical Chemistry for the Oxygen Adducted Tetradentate Schiff base Cobalt(III) Complexes in Pyridine Solution (Pyridine 용액에서 산소 첨가된 네자리 Schiff base Cobalt(III) 착물들의 전기 분석화학적 연구)

  • Rim, Chae-Pyeong;Chae, Hee-Nam;Chjo, Ki-Hyung;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • Tetradentate Schiff base cobalt(II) complexes such as $Co(II)_2-N$, N-bis(salicylidene)-m-phenylendiimine; [$Co(II)_2(SMPD)_2(H_2O)_4$] and $Co(II)_2-N$, N-bis(salicylidene)-p-phenylendiimine: [$Co(II)_2(SPPD)_2(H_2O)_4$], and oxygen adducted cobalt (III) complexes such as [$Co(III)_2O_2(SMPD)_2(Py)_2$] and [$Co(III)_2O_2(SPPD)_2(Py)_2$] in pyridine solutions were synthesized. It was identified that the oxygen adducted cobalt(III) complexes have hexacoordinated octahedral configuration with pyridine and oxygen from the measurement of elemental analysis, AA, IR spectra, and TGA. The redox processes were investigated for the oxygen adducted complexes in 0.1M TEAP-pyridine solution, using cyclic voltammetry on the glassy carbon electrode. The redox processes of oxygen adducted Co(III) complexes result in $$[Co(III)_2-O_2-CO(III)]\rightarrow^{e^-}[Co(III)-O_2-Co(II)]\rightarrow^{e^-}[Co(II)-O_2-Co(II)]\rightleftarrows^{e^-}[Co(II)+Co(II)+O_2{\cdot}^-]\rightleftarrows^{e^-}[Co(II)+Co(I)+O_2{\cdot}^-]\rightleftarrows^{e^-}[Co(I)+Co(I)+O_2{\cdot}^-]$$.

  • PDF

Continuous Mediated Electrochemical Oxidation of Ethylene Glycol by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 에텔렌글리콜의 연속 매개전해 산화)

  • Kim, Ik-Seong;Park, Seung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.635-640
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) is an aqueous process which oxidizes organics electrochemicallly at low temperatures and pressures. The useful process can be used to treat mixed wastes containing hazardous organics. This paper have studied MEO of ethylene glycol (EG) in nitric acids by Fe(III)/Fe(II) and Co(III)/Co(II) system. It investigated current density, supporting electrolyte concentration, hydraulic retention time, removal efficiency of EG by MEO. Removal efficiency of EG by MEO was superior in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, where MEO removal efficiency was 100 percent. In case of EG, the reactions were fast and good yields of carbon dioxide formation was observed.

Calculation of the Dipole Moments for Transition Metal Complexes by Valence Bond Method (I). Calculation of the Dipole Moments for Octahedral $[M(III)O_3S_3]$ Type Complexes [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) and Os(III)] (원자가 결합법에 의한 전이원소 착물에 대한 쌍극자모멘트의 계산 (제1보). 팔면체 $[M(III)O_3S_3]$ 형태 착물의 쌍극자모멘트의 계산 [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)])

  • Sangwoon Ahn;Jeoung Soo Ko
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.198-205
    • /
    • 1979
  • A valence bond method of calculation of the dipole moments for octahedral $(M(III)0_3S_3)$ type complexes are developed, using $d^2sp^3 $hybrid orbitals of the central metal ions and the single basis set orbital of ligands. (M (III) =V (III), Cr (III), Mn (III), Fe (III), Co (III), Ru (III), Rh (III) and OS (III)). In this method the mixing coefficient of the valence basis sets for the central metal ion with the appropriate ligand orbitals is not required to be the same, differently from the molecular orbital method. The valence bond method is much more easier to calculate the dipole moments for octahedral complexes than the approximate molecular orbital method and the calculated results are also in the range of the experimental vaues.

  • PDF

Saturated- and Unsaturated-Azamacrocyclic Complexes $(M = Co^{3+}, Fe^{3+}$ or $Mn^{3+})$ Catalyzed Oxidation of Hindered Phenols by Molecular Oxygen under Sodium Borohydride (Sodium Borohydride 하에서 산소에 의한 포화- 및 불포화-질소주게 거대고리 착물 $(M=Co^{3+},\;Fe^{3+}$$Mn^{3+})$을 촉매로 한 Hindered Phenols의 산화반응)

  • Yu-Chul Park;Seong-Su Kim;Hun-Gil Na
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.648-654
    • /
    • 1993
  • $[M(cyclam)X_2]Y(M=Co^{3+},\;Fe^{3+},\;Mn^{3+}\;:\;X=Cl-^,\;Br^-,\;NCS^-\;:\;Y=Cl^-,\;Br^-,\;NCS^-),\;[Co(trans-14-diene)X_2]Y(X=Cl^-,\;Br^-\;:\;Y=ClO_4^-)\;and\;[Co(trans-14-diene)](ClO_4)_2$ were able to activate an molecular oxygen under sodium borohydride. 2,4-di-tert-butylphenol and 2,6-di-tert-butylphenol reacted with activated molecular oxygen to give 2,4-tert-butyl-1,6-benzoquinone(BQ) and 3,5,3',5'-tetra-tert-butyldiphenoquinone(DPQ). The saturated tetraazamacrocyclic complexes, $[Co(cyclam)X_2]Y$, were more an effective catalyst than $[Co(trans-14-diene)X_2]Y$ the unsaturated complexes in the formation of BQ and DPQ. The mole ratio of $O_2$ vs. catalyst $(O_2/M)$ for $[Co(cyclam)X_2]Y$ and [Co(trans-14-diene)X_2]Y$ was 1/1, while it was 1/2 for $[M(cyclam)Cl_2]Cl(M=Fe(III),\;Mn(III))$. The results suggested that Co(III)-macrocyclic complexes activated molecular oxygen as superoxolike ${O_2}^-$ and $[M(cyclam)Cl_2]Cl(M=Fe(III),\;Mn(III))$ activated that as peroxolike $O_2^{2-}$.

  • PDF

Adsorption Characteristics of Co(II), Ni(II), Cr(III) and Fe(III) Ions onto Cation Exchange Resin - Application to the Demineralizing Process in a Primary Coolant System of PWR (양이온교환수지에 대한 Co(II), Ni(II), Cr(III), Fe(III) 이온의 흡착 특성 - 원자로 일차 냉각재 계통내 탈염 공정에의 적용)

  • Kang, So-Young;Lee, Byung-Tae;Lee, Jong-Un;Moon, Seung-Hyeon;Kim, Kyoung-Woong
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • Characteristics of Amberlite IRN 77, a cation exchange resin, and the mechanisms of its adsorption equilibria with Co(II), Ni(II), Cr(III) and Fe(III) ions were investigated for the application of the demineralizing process in the primary coolant system of a pressurized water reactor (PWR). The optimum dosage of the resin for removal of the dissolved metal ions at $200mgL^{-1}$ was 0.6 g for 100 mL solution. Most of each metal ion was adsorbed onto the resin in an hour from the start of the reaction. Each metal adsorption onto the resin could be well represented by Langmuir isotherms. However, in the case of Fe(III) adsorption, continuous formation of Fe-oxide or -hydroxide and its subsequent precipitation inhibited the completion of the equilibrium between the metal and the adsorbent Cobalt(II) and Ni(II), which have an equivalent electrovalence, were adsorbed to the resin with a similar adsorption amount when they coexisted in the solution. However, Cr(III) added to the solution competitively replaced Co(II) and Ni(II) which were already adsorbed onto the resin, resulting in desorption of these metals into the solution. The result was likely due to a higher adsorption affinity of Cr(III) than Co(II) and Ni(II). This implies that the interactively competitive adsorption of multi-cations onto the resin should be fully considered for an efficient operation of the demineralizing ion exchange process in the primary coolant system.

Electrochemical Properties of Oxygen Adducts Pentadentate Schiff Base Cobalt (Ⅱ) Complexes in Aprotic Solvents (비수용매에서 다섯 자리 Schiff Base Cobalt (Ⅱ) 착물들의 산소 첨가 생성물에 대한 전기화학적 성질)

  • Choe, Ju Hyeong;Jeong, Jin Sun;Choe, Yong Guk;Seo, Seong Seop
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.51-62
    • /
    • 1990
  • Pentadentate Schiff base cobalt(II) complexes; Co(II)(Sal-DET) and Co(II)(Sal-DPT) were synthesized and these complexes were allowed to react with dry to form oxygen adducts of cobalt(II) complexes such as [Co(III)(Sal-DET)]$_2O_2$ and [Co(III)(DPT)]$_2O_2$ in aprotic solvents. These complexes have been identified by IR spectra, TGA, DSC, magnetic susceptibility measurements, and elemental analysis. It has been found that the oxygen adadduct complexes of $\mu$-peroxo type have hexaccordinated octahedral configuration with pentadentate schiff base cobalt(II) and oxygen, but the mole ratio of oxygen to cobalt(III) complexes of first step for oxygen adduct formation reaction of cobalt(II) complexes in aprotic solvents are 1:1. The redox reaction processes of Co(II)(Sal-DET), Co(II)(Sal-DPT), and oxygen adduct of cobalt(II) complexes were investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMSO and 0.1M TEAP-pyridine. As a result the reduction reaction processes of Co(III)/Co(II) and Co(II)/Co(I) for cobalt(II) complexes and oxygen adducts of cobalt(II) complexes are two irreversible steps of one eletron process, and reaction processes of oxygen for oxygen adducts complexes were quasireversible and redox range of potential was $E_{pc}$ = -0.97V∼-0.86V and $E_{pa}$ = -0.87V ∼ 0.64V.

  • PDF

Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments (철환원 박테리아에 의한 금속 환원 및 광물형성)

  • Yul Roh;Hi-Soo Moon;Yungoo Song
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2002
  • Microbial metal reduction influences the biogeochemical cycles of carbon and metals as well as plays an important role in the bioremediation of metals, radionuclides, and organic contaminants. The use of bacteria to facilitate the production of magnetite nanoparticles and the formation of carbonate minerals may provide new biotechnological processes for material synthesis and carbon sequestration. Metal-reducing bacteria were isolated from a variety of extreme environments, such as deep terrestrial subsurface, deep marine sediments, water near Hydrothemal vents, and alkaline ponds. Metal-reducing bacteria isolated from diverse extreme environments were able to reduce Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI) using short chain fatty acids and/or hydrogen as the electron donors. These bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite ($Fe_3$$O_4$), siderite ($FeCO_3$), calcite ($CaCO_3$), rhodochrosite ($MnCO_3$), vivianite [$Fe_3$($PO_4$)$_2$ .$8H_2$O], and uraninite ($UO_2$). Geochemical and environmental factors such as atmospheres, chemical milieu, and species of bacteria affected the extent of Fe(III)-reduction as well as the mineralogy and morphology of the crystalline iron mineral phases. Thermophilic bacteria use amorphous Fe(III)-oxyhydroxide plus metals (Co, Cr, Ni) as an electron acceptor and organic carbon as an electron donor to synthesize metal-substituted magnetite. Metal reducing bacteria were capable of $CO_2$conversion Into sparingly soluble carbonate minerals, such as siderite and calcite using amorphous Fe(III)-oxyhydroxide or metal-rich fly ash. These results indicate that microbial Fe(III)-reduction may not only play important roles in iron and carbon biogeochemistry in natural environments, but also be potentially useful f3r the synthesis of submicron-sized ferromagnetic materials.

Studies on The Electrochemical Properties of Oxygen adducts Tetradentate Schiff Base Cobalt(II) Complexes in DMSO (I) (DMSO용액에서 네자리 Schiff Base Cobalt(II) 착물들의 산소 첨가 생성물에 대한 전기화학적 성질에 관한 연구 (제 1 보))

  • Chjo Ki-Hyung;Jin-Soon Chung;Heui-Suk Ham;Seoing-Seob Seo
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.542-554
    • /
    • 1987
  • Tetradentate schiff base cobalt(II) complexes; Co(SED), Co(SND) and Co(SOPD) have been prepared, these complexes have react with dry oxygen in DMSO to form oxygen adducts cobalt(III) complexes; $[Co(SED)(DMSO)]_2O_2,\;[Co(SND)(DMSO)]_2O_2$ and $[Co(SOPD)(DMSO)]_2O_2$. It seems to be that the oxygen adducts cobalt(Ⅲ) complexes have heexa coordinated octahedral configration with tetradentate schiff base cobalt (III), DMSO and oxygen, and the mole ratio of oxygen to cobalt(II) complexes are 1 : 2, these complexes have been identified by IR-Spectra, T.G.A., magnetic susceptibilitis and elemental analysis of C.H.N. and Cobalt. The redox reaction process of Co(SED), Co(SND) and Co(SOPD) complexes was investigated by cyclic voltammetry with glassy carbon electrode in 0.1M TEAP-DMSO. The results of redox reaction process of Co(II) / Co(III) and Co(II) / Co(I) for cobalt(SED) and cobalt(SOPD) complexes and Co(II) / Co(III) process for cobalt(SND) complex are reversible process but Co(II) / Co(I) process of Cobalt(SND) complex is irreversible, and oxygen adduct complexes to quasi reversibly with oxygen should be very closed related to the redox potentials of range, $E_{pc}$ = -0.80~-0.89V and $E_{pa}$ = -0.70~-0.76V.

  • PDF

Electrochemical Propertics and Oxidation Reaction of Hydrazobenzene by Oxygen Adducted Tetradentate Schiff Base Cobalt(II)(3MeOSED) Activated Catalyst in Aprotic Solvents(I) (비수용매에서 산소첨가된 네자리 Schiff Base Cobalt(II)(3MeOSED) 활성촉매에 의한 Hydrazobenzene의 산화반응과 전기화학적 성질 (제 1 보))

  • Ki-Hyung Chjo;Yong-Kook Choi;Sang-Bock Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.261-272
    • /
    • 1992
  • Tetradentate Schiff base Cobalt(II)(3MeOSED)$(H_2O)_2$ complexe was synthesized and allowed to react with dry oxygen to form oxygen adducts of Cobalt(III) complexes such as ${\mu}$-peroxo type [Co(III)(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$in DMF and DMSO or superoxo type [Co(III)(3MeOSED)(Py)]$O_2$ in pyridine. The oxygen adducted complex was investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMF (-DMSO,-Py) as supporting electrolyte solution. As a result the reduction reaction process occurred to four steps including prewave Of $O_2^-$in 1 : 1 oxygen adducted superoxo type [Co(III)(3MeOSED)(Py)]$O_2$complex and three steps not including prewave of $O_2^-$ in 1 : 2 oxygen adducted ${\mu}$-peroxo type [Co(III)-(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$. A superoxo type [Co(III)(3MeOSED)(L)]$O_2\;(L: CH_3OH)$ was generated with oxygen in methanol. Selectively oxidized hydrazobenzene $(H_2AB)$ to trans-azobenzene(t-AB) and the rate constant k for oxidation reaction of the following equation is $(2.96 {\pm} 0.2)$${\times}$ $10^{-1}$M/sec. $H_2AB$ + Co (II)(3MeOSED)$(L_2)+O_2\;{\rightleftarrow^K}$ [Co(III)(3MeOSED)(L)]$O_2{\cdot}H_2AB{\longrightarrow^K}$ Co(II(3MeOSED)$(L)_2$+t-AB+$H_2O_2 $.

  • PDF