• Title/Summary/Keyword: Clutter background

Search Result 46, Processing Time 0.021 seconds

Fuzzy Based Shadow Removal and Integrated Boundary Detection for Video Surveillance

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2126-2133
    • /
    • 2014
  • We present a scalable object tracking framework, which is capable of removing shadows and tracking the people. The framework consists of background subtraction, fuzzy based shadow removal and boundary tracking algorithm. This work proposes a general-purpose method that combines statistical assumptions with the object-level knowledge of moving objects, apparent objects, and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects and shadows are processed differently in order to supply an object-based selective update. Experimental results demonstrate that the proposed method is able to track the object boundaries under significant shadows with noise and background clutter.

Development of image tracking technic to moving target (이동중인 표적에 대한 영상추적기법의 개발)

  • 양승윤;이종헌;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.183-186
    • /
    • 1988
  • The problem addressed in this paper is the accurate tracting of a dynamic target using outputs from a forward - looking infrared(FLIR) sensor as measurements. The important variations are 1) the spread of the target intensity pattern in the FLIR image plane, 2) target motion characteristics, and 3) the rms value and both spartial and temporal correlation of the back - ground noise. Based on this insights. design modifications and on - line adaptation copabilities are incorporated to enable this type of filter track highly maneuverable targets such as air-to-air missiles, with spatially distributed and changing image intensity profiles, against, background clutter.

  • PDF

Performance analysis of CFAR detectors based on order statistics for nonhomogeneous background (비균일 환경에서 표적 검파를 위한 순서계통에 근거한 일정오경보율 검파기의 성능 해석)

  • 한동석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1550-1558
    • /
    • 1997
  • In this paper, we first propose a modified OS CFAR detector called the order statistics cell averaging(OSCA) CFAR detector and anlyze its performance for a Rayleigh target in homogeneous backgrounds, clutter edges, and satistics smallest of(OSSO) CFAR detectors for a Rayleigh target to nonhomogeneous environments. Computer simulation results show that the OSCA CFAR detector has superior performance to OS, OSGO, and OSSO CFAR detectors in homogeneous and multiple target environments. And the proposed detector shows its robustness for fast detection because it requires falf the processing time of the OS CFAR detector.

  • PDF

Adaptive CFAR Algorithm using Two-Dimensional Block Estimation (이차원 블록 추정을 이용한 적응 CFAR 알고리즘)

  • Choi Beyung Gwan;Lee Min Joon;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • Adaptive constant false alarm rate(CFAR) algorithm is used for good detection probability as well as constant false alarm rate in clutter background. Especially, filtering technique adaptive to spatial variation is necessary for improving detection quality in non stationary clutter environment which has spatial correlation and large magnitude deviation. In this paper, we propose a two-dimensional block interpolation(TBI) adaptive CFAR algorithm that calculates the node estimate in the fred two dimensional region and subsequently determines the final estimate for each resolution cell by two-dimensional interpolation. The proposed method is efficient for filtering abnormal ejection by adopting distribution median in fixed region and also has advantage of reducing required memory space by using estimation method which gets final values after calculating the block node values. Through simulations, we show that the proposed method is superior to the traditional adaptive CFAR algorithms which are transversal or recursive in aspect of the detection performance and required memory space.

Design and Implementation of Biological Signal Measurement Algorithm for Remote Patient Monitoring based on IoT (IoT기반 원격환자모니터링을 위한 생체신호 측정 알고리즘 설계 및 구현)

  • Jung, Ae-Ran;You, Yong-Min;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.957-966
    • /
    • 2018
  • Recently, the demand for remote patient monitoring based on IoT has been increased due to aging population and an increase in single-person household. A non-contact biological signal measurement system using multiple IR-UWB radars for remote patient monitoring is proposed in this paper. To reduce error signals, a multilayer Subtraction algorithm is applied because when the background subtraction algorithm was applied to the biological signal processing, errors occurred such as voltage noise and staircase phenomenon. Therefore, a multilayer background subtraction algorithm is applied to reduce error occurrence. The multilayer background subtraction algorithm extracts the signal by calculating the amount of change between the previous clutter and the current clutter. In this study, the SVD algorithm is used. We applied the improved multilayer background subtraction algorithm to biological signal measurement and computed the respiration rate through Fast Fourier Transform (FFT). To verify the proposed system using IR-UWB radars and multilayer background subtraction algorithm, the respiration rate was measured. The validity of this study was verified by obtaining a precision of 97.36% as a result of a control experiment with Neulog's attachment type breathing apparatus. The implemented algorithm improves the inconvenience of the existing contact wearable method.

MXTM-CFAR Processor and Its Performance Analysis (MXTM-CFAR 처리기와 그 성능분석)

  • 김재곤;김응태;송익호;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.719-729
    • /
    • 1992
  • An improved MXTM (maximum trimmed mean) -CFAR (constant false alarm rate) processor is proposed to reduce false alarm rates In detecting radar targets and Its performance character is ticsare analyzed to be compared with those of other CFAR processors. The proposed MXTM-CFAR processor is obtained by combining the GO (greatest of ) -CFAR processor reducing excessive falsealarm rate at riutter edges with the TM-CFAR processor showing good performances In homo-geneous Jnonhornog eneous background. Performance analyses have been done by computing detection probability, constant false alarm rate and detection thresholds under the homogeneous or multiple target environments and at the clutter edges. Analysis results how that the proposed CFAR processor maintains its performance as good as those of,05(order statistics) and TM-CFAR inhomogeneous and multiple target environments and Can reduce the false alarm rate at clutter edges. Overall computing time hfs been also reduced.

  • PDF

Seafloor terrain detection from acoustic images utilizing the fast two-dimensional CMLD-CFAR

  • Wang, Jiaqi;Li, Haisen;Du, Weidong;Xing, Tianyao;Zhou, Tian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.187-193
    • /
    • 2021
  • In order to solve the problem of false terrains caused by environmental interferences and tunneling effect in the conventional multi-beam seafloor terrain detection, this paper proposed a seafloor topography detection method based on fast two-dimensional (2D) Censored Mean Level Detector-statistics Constant False Alarm Rate (CMLD-CFAR) method. The proposed method uses s cross-sliding window. The target occlusion phenomenon that occurs in multi-target environments can be eliminated by censoring some of the large cells of the reference cells, while the remaining reference cells are used to calculate the local threshold. The conventional 2D CMLD-CFAR methods need to estimate the background clutter power level for every pixel, thus increasing the computational burden significantly. In order to overcome this limitation, the proposed method uses a fast algorithm to select the Regions of Interest (ROI) based on a global threshold, while the rest pixels are distinguished as clutter directly. The proposed method is verified by experiments with real multi-beam data. The results show that the proposed method can effectively solve the problem of false terrain in a multi-beam terrain survey and achieve a high detection accuracy.

Target Tracking based on Kernelized Correlation Filter Using MWIR and SWIR Sensors (MWIR 및 SWIR 센서를 이용한 커널상관필터기반의 표적추적)

  • Sungu Sun;Yuri Lee;Daekyo Seo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • When tracking small UAVs and drone targets in cloud clutter environments, MWIR sensors are often unable to track targets continuously. To overcome this problem, the SWIR sensor is mounted on the same gimbal. Target tracking uses sensor information fusion or selectively applies information from each sensor. In this case, parallax correction using the target distance is often used. However, it is difficult to apply the existing method to small UAVs and drone targets because the laser rangefinder's beam divergence angle is small, making it difficult to measure the distance. We propose a tracking method which needs not parallax correction of sensors. In the method, images from MWIR and SWIR sensors are captured simultaneously and a tracking error for gimbal driving is chosen by effectiveness measure. In order to prove the method, tracking performance was demonstrated for UAVs and drone targets in the real sky background using MWIR and SWIR image sensors.

Closely Spaced Target Detection using Intensity Sorting-based Context Awareness

  • Kim, Sungho;Won, Jin-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1839-1845
    • /
    • 2016
  • Detecting remote targets is important to active protection system (APS) or infrared search and track (IRST) applications. In normal situation, the well-known constant false alarm rate (CFAR) detector works properly. However, decoys in APS or closely spaced targets in IRST degrade the detection capability by increasing background noise level in the CFAR detector. This paper presents a context aware CFAR detector by the intensity sorting and selection of background region to reduce the effect of neighboring targets that lead to incorrect estimation of background statistics. The existence of neighboring targets can be recognized by intensity sorting where neighboring targets usually show highest ranks. The proposed background statistics (mean, standard deviation) estimation method from median local pixels can be aware of the background context and reduce the effects of the neighboring targets, which increase the signal-to-clutter ratio. The experimental results on the synthetic APS sequence, real adjacent target sequence, and remote pedestrian sequence validated that the proposed method produced an enhanced detection rate with the same false alarm rate compared with the hysteresis-CFAR (H-CFAR) detection.

Comparison of GMTI Performance Using DPCA for Various Clutters (DPCA를 이용한 지상 이동 표적 탐지에서 클러터 종류에 따른 성능 비교)

  • Lee, Myung-Jun;Lee, Seung-Jae;Kang, Byung-Soo;Ryu, Bo-Hyun;Lim, Byoung-Gyun;Oh, Tae-Bong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.487-496
    • /
    • 2017
  • Ground moving target indicator(GMTI) using syntheticaperture radar(SAR) used for finding moving targets on wide background clutter in short time is one of good ways to monitor a traffic situation or an enemy's threat. Although displaced phase center antenna (DPCA) is a real time method with low computational complexity, there have been few studies about its performance against various ground clutters. Thus, we need to analyze GMTI performance for various ground clutters in order to design a suitable DPCA detector. In this paper, simulation results show that the conventional DPCA detector produces different performance in terms of detection rate and false alarm rate. In particular, the false alarm rate of heterogeneous or extremely heterogeneous clutter from urban area is higher than one of homogeneous clutter from natural area.