• Title/Summary/Keyword: Clustering protocol

Search Result 229, Processing Time 0.028 seconds

Performance Analysis of Hierarchical Routing Protocols for Sensor Network (센서 네트워크를 위한 계층적 라우팅 프로토콜의 성능 분석)

  • Seo, Byung-Suk;Yoon, Sang-Hyun;Kim, Jong-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.47-56
    • /
    • 2012
  • In this study, we use a parallel simulator PASENS(Parallel SEnsor Network Simulator) to predict power consumption and data reception rate of the hierarchical routing protocols for sensor network - LEACH (Low-Energy Adaptive Clustering Hierarchy), TL-LEACH (Two Level Low-Energy Adaptive Clustering Hierarchy), M-LEACH (Multi hop Low-Energy Adaptive Clustering Hierarchy) and LEACH-C (LEACH-Centralized). According to simulation results, M-LEACH routing protocol shows the highest data reception rate for the wider area, since more sensor nodes are involved in the data transmission. And LEACH-C routing protocol, where the sink node considers the entire node's residual energy and location to determine the cluster head, results in the most efficient energy consumption and in the narrow area needed long life of sensor network.

An Energy-Efficient Clustering Protocol Based on The Cross-Layer Design in Wireless Sensor Networks (무선 센서 네트워크에서 크로스 레이어 기반의 에너지 효율적인 클러스터링 프로토콜)

  • Kim, Tae-Kon;Lee, Hyung-Keun
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.165-170
    • /
    • 2007
  • The main goal of research concerning clustering protocols is to minimize the energy consumption of each node and maximize the network lifetime of wireless sensor networks. However, most existing clustering protocols mainly focused on the design and formation of clusters, leaving the consideration of communication between the cluster head and the sink behind. In this paper, we propose efficient multi path routing algorithm by using MAC-NET Cross-layering. multi path needed only one tiny packet from sink to setup. In addition proposed algorithm can be used for any cluster-based hierarchical inter-clustering routing algorithm. The simulation results demonstrate that proposed algorithm extended the overall survival time of the network by reducing the load of cluster heads. The performance of proposed algorithm is less affected by the extension of sensing field than other inter-clustering operation.

  • PDF

Role-based Self-Organization Protocol of Clustering Hierarchy for Wireless Sensor Networks (무선 센서 네트워크를 위한 계층형 클러스터링의 역할 기반 자가 구성 프로토콜)

  • Go, Sung-Hyun;Kim, Hyoung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.137-145
    • /
    • 2008
  • In general, a large-scale wireless sensor network(WSNs) is composed of hundreds of or thousands of sensor nodes. In this large-scale wireless sensor networks, it is required to maintain and manage the networks to lower management cost and obtain high energy efficiency. Users should be provided with sensing service at the level of quality for users through an efficient system. In evaluating the result data quality provided from this network to users, the number of sensors related to event detection has an important role. Accordingly, the network protocol which can provide proper QoS at the level of users demanding quality should be designed in a way such that the overall system function has not to be influenced even if some sensor nodes are in error. The energy consumption is minimized at the same time. The protocol suggested in this article is based on the LEACH protocol and is a role-based self-Organization one that is appropriate for large-scale networks which need constant monitoring.

  • PDF

Desing of Secure Adaptive Clustering Algorithm Using Symmetric Key and LEAP in Sensor Network (센서네트워크 통신에서 대칭키 방식과 LEAP을 적용한 안전한 동적 클러스터링 알고리즘 설계)

  • Jang Kun-Won;Shin Dong-Gyu;Jun Moon-Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.3
    • /
    • pp.29-38
    • /
    • 2006
  • Recent advances in wireless communication technology promotes many researches related to sensor network and brings several proposals to fit into various types of sensor network communication. The research direction for sensor network is divided into the method to maximize an energy efficiency and security researches that has not been remarkable so far. To maximize an energy efficiency, the methods to support data aggregation and cluster-head selection algorithm are proposed. To strengthen the security, the methods to support encryption techniques and manage a secret key that is applicable to sensor network are proposed, In. However, the combined method to satisfy both energy efficiency and security is in the shell. This paper is devoted to design the protocol that combines an efficient clustering protocol with key management algorithm that is fit into various types of sensor network communication. This protocol may be applied to sensor network systems that deal with sensitive data.

Clustering Triangular Routing Protocol in Wireless Sensor Network (무선 센서 네트워크에서 삼각 클러스터링 라우팅 기법)

  • Nurhayati, Nurhayati;Lee, Kyung Oh;Choi, Sung Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.913-916
    • /
    • 2010
  • Wireless sensor networks consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. In BCDCP, all sensors send data from CH (Cluster Head) and then to BS (Base Station). BCDCP works well in small-scale network but in large scale network it is not appropriated since it uses much energy for long distance wireless communication. We propose a routing protocol - Triangular Clustering Routing Protocol (TCRP) - to prolong network life time through the balanced energy consumption. TCRP selects cluster head of triangular shape. The sensor field is divided into energy level and in every level we choose one node as a gate node. This gate node collects data and sends it to the leader node. Finally the leader node sends the aggregated data to the BS. We show TCRP outperforms BCDCP with several experiments.

A New Scheme for Maximizing Network Lifetime in Wireless Sensor Networks (무선 센서네트워크에서 네트워크수명 극대화 방안)

  • Kim, Jeong Sahm
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.47-59
    • /
    • 2014
  • In this paper, I propose a new energy efficient clustering scheme to prolong the network lifetime by reducing energy consumption at the sensor node. It is possible that a node determines whether to participate in clustering with certain probability based on local density. This scheme is useful under the environment that sensor nodes are deployed unevenly within the sensing area. By adjusting the probability of participating in clustering dynamically with local density of nodes, the energy consumption of the network is reduced. So, the lifetime of the network is extended. In the region where nodes are densely deployed, it is possible to reduce the energy consumption of the network by limiting the number of node which is participated in clustering with probability which can be adjusted dynamically based on local density of the node. Through computer simulation, it is verified that the proposed scheme is more energy efficient than LEACH protocol under the environment where node are densely located in a specific area.

IAM Clustering Architecture for Inter-Cloud Environment (Inter-Cloud 환경을 위한 IAM 클러스터링 아키텍처)

  • Kim, Jinouk;Park, Jung Soo;Park, Minho;Jung, Souhwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.860-862
    • /
    • 2015
  • In this paper, we propose a new type of IAM clustering architecture for the efficiency of user authentication and authorization in the Inter-Cloud environment. clustering architecture allows users to easily use un-registered services with their registered authentication and access permissions through pre-Access Agreement. through this paper, we explain our authentication protocol and IAM clustering architecture components.

A Probability-based Clustering Protocol for Data Dissemination in Wireless Sensor Networks (무선 센서 네트워크에서 확률 기반의 클러스터링을 이용한 계층적 데이터 전송 프로토콜)

  • Kim, Moon-Seong;Cho, Sang-Hun;Lim, Hyung-Jin;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • One of the major challenges of designing a dissemination protocol for Wireless Sensor Networks(WSNs) is energy efficiency. Recently, this issue has received much attention from the research community, and SPMS, which outperforms the well-known protocol SPIN, specially is a representative protocol. In addition, one of many characters of SPMS is the use of the shortest path to minimize the energy consumption. However, since it repeatedly uses the same path as the shortest path, the maximizing of the network lifetime is impossible, though it reduces the energy consumption. In this paper, we propose a dissemination protocol using probability-based clustering which guarantees energy-efficient data transmission and maximizes network lifetime. The proposed protocol solves the network lifetime problem by a novel probability function, which is related to the residual energy and the transmission radius between nodes. The simulation results show that it guarantees energy-efficient transmission and moreover increases the network lifetime by approximately 78% than that of SPMS.

  • PDF

An Efficient Clustering Mechanism for WSN (무선 센서 네트워크를 위한 효율적인 클러스터링 기법)

  • Lee, Jinwoo;Mohammad, Baniata;Hong, Jiman
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.24-31
    • /
    • 2017
  • In wireless sensor networks, sensor nodes are deployed in a remote, harsh environment. When the power of the sensor node is consumed in such a network, the sensor nodes become useless together with the deterioration of the quality and performance of the sensor network which may save human life. Although many clustering protocols have been proposed to improve the energy consumption and extend the life of the sensor network, most of the previous studies have shown that the overhead of the cluster head is quite large. It is important to design a routing protocol that minimizes the energy consumption of each node and maximizes the network lifetime because of the power limitations of the sensor nodes and the overhead of the cluster heads. Therefore, in this paper, we propose an efficient clustering scheme that reduces the burden of cluster heads, minimizes energy consumption, and uses algorithms that maximize network lifetime. Simulation results show that the proposed clustering scheme improves the energy balance and prolongs the network life when compared with similar techniques.

A Study on Energy Conservative Hierarchical Clustering for Ad-hoc Network (애드-혹 네트워크에서의 에너지 보존적인 계층 클러스터링에 관한 연구)

  • Mun, Chang-Min;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2800-2807
    • /
    • 2012
  • An ad-hoc wireless network provides self-organizing data networking while they are routing of packets among themselves. Typically multi-hop and control packets overhead affects the change of route of transmission. There are numerous routing protocols have been developed for ad hoc wireless networks as the size of the network scale. Hence the scalable routing protocol would be needed for energy efficient various network routing environment conditions. The number of depth or layer of hierarchical clustering nodes are analyzed the different clustering structure with topology in this paper. To estimate the energy efficient number of cluster layer and energy dissipation are studied based on distributed homogeneous spatial Poisson process with context-awareness nodes condition. The simulation results show that CACHE-R could be conserved the energy of node under the setting the optimal layer given parameters.