• 제목/요약/키워드: Clustering genes

검색결과 143건 처리시간 0.021초

Clustering Approaches to Identifying Gene Expression Patterns from DNA Microarray Data

  • Do, Jin Hwan;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.279-288
    • /
    • 2008
  • The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

시드 클러스터링 방법에 의한 유전자 발현 데이터 분석 (Gene Expression Data Analysis Using Seed Clustering)

  • 신미영
    • 전자공학회논문지CI
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2005
  • 마이크로어레이 데이터의 클러스터 분석은 생물학적으로 연관성 있는 유전자 그룹을 찾기 위해 종종 사용되는 방법이다. 기능적으로 연관된 유전자들이 대개 유사한 발현 패턴을 나타내는 특징을 이용하여 유사한 발현 프로파일을 가진 유전자 그룹을 찾아냄으로써 알려지지 않은 유전자들의 기능을 같은 그룹에 속한 다른 유전자로부터 유추할 수 있기 때문이다. 본 논문에서는 클러스터 분석을 위해 시드 클러스터링 알고리즘을 새로이 제안하고, 이 방법을 마이크로어레이 데이터 분석에 적용해본다. 시드 클러스터링 방법은 주어진 데이터를 계산적으로 분석하여 시드 패턴을 자동 추출하고, 이러한 시드 패턴을 목적 클러스터의 프로토타입 벡터로서 간주하여 클러스터를 생성하는 방법이다. 이러한 시드 클러스터링 방법은 수학적 원리에 기초하고 있기 때문에, 매우 체계적인 방법으로 안정적이며 일관성 있는 클러스터링 결과를 생성할 수 있다. 또한, 실제 마이크로어레이 데이터 분석에 적용해본 결과 데이터에 내재된 각 클러스터를 대표하는 시드 패턴을 매우 효과적으로 자동 추출할 수 있었으며, 클러스터링 결과 또한 타 방법에 비해 다소 우월한 경향을 나타내었다.

Different Way of LMP/TAP/MHC Gene Clustering in Vertebrates,. Viviparity and Anti-tumor Immunity Failure

  • Bubanovic, Ivan;Najman, Stevo
    • Animal cells and systems
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2005
  • Class I and class II MHC genes have been identified in most of the jawed vertebrate taxa. In all investigated bony fish species, unlike mammals, the classical class I and class II MHC genes are not linked and even are found on different chromosomes. Linking and clustering of the class I and class II MHC genes is not the only phenomenon clearly detected in the evolution of immune system from cartilaginous to mammals. In all non-mammalian classes the LMP/TAP genes are highly conserved within class I genes region, while these genes are conserved within class II genes region only in mammals. Today we know that LMP/TAP genes in mammals have a crucial role in peptide processing for presentation within class I molecules, as well as in anti-tumor immunity. For these reasons, differences in clustering of LMP/TAP/MHC genes can be responsible for the differences in mechanisms and efficacy of anti-tumor immunity in non-mammalian vertebrates compared to same mechanisms in mammals. Also, the differences in cytokine network and anti-tumor antigens presentation within classes of vertebrates can be explained by toe peculiarity of LMP/TAP/MHC gene clustering.

A Clustering Tool Using Particle Swarm Optimization for DNA Chip Data

  • Han, Xiaoyue;Lee, Min-Soo
    • Genomics & Informatics
    • /
    • 제9권2호
    • /
    • pp.89-91
    • /
    • 2011
  • DNA chips are becoming increasingly popular as a convenient way to perform vast amounts of experiments related to genes on a single chip. And the importance of analyzing the data that is provided by such DNA chips is becoming significant. A very important analysis on DNA chip data would be clustering genes to identify gene groups which have similar properties such as cancer. Clustering data for DNA chips usually deal with a large search space and has a very fuzzy characteristic. The Particle Swarm Optimization algorithm which was recently proposed is a very good candidate to solve such problems. In this paper, we propose a clustering mechanism that is based on the Particle Swarm Optimization algorithm. Our experiments show that the PSO-based clustering algorithm developed is efficient in terms of execution time for clustering DNA chip data, and thus be used to extract valuable information such as cancer related genes from DNA chip data with high cluster accuracy and in a timely manner.

Use of Factor Analyzer Normal Mixture Model with Mean Pattern Modeling on Clustering Genes

  • Kim Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • 제13권1호
    • /
    • pp.113-123
    • /
    • 2006
  • Normal mixture model(NMM) frequently used to cluster genes on microarray gene expression data. In this paper some of component means of NMM are modelled by a linear regression model so that its design matrix presents the pattern between sample classes in microarray matrix. This modelling for the component means by given design matrices certainly has an advantage that we can lead the clusters that are previously designed. However, it suffers from 'overfitting' problem because in practice genes often are highly dimensional. This problem also arises when the NMM restricted by the linear model for component-means is fitted. To cope with this problem, in this paper, the use of the factor analyzer NMM restricted by linear model is proposed to cluster genes. Also several design matrices which are useful for clustering genes are provided.

FCAnalyzer: A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms

  • Kim, Sang-Bae;Ryu, Gil-Mi;Kim, Young-Jin;Heo, Jee-Yeon;Park, Chan;Oh, Berm-Seok;Kim, Hyung-Lae;Kimm, Ku-Chan;Kim, Kyu-Won;Kim, Young-Youl
    • Genomics & Informatics
    • /
    • 제5권1호
    • /
    • pp.10-18
    • /
    • 2007
  • Numerous studies have reported that genes with similar expression patterns are co-regulated. From gene expression data, we have assumed that genes having similar expression pattern would share similar transcription factor binding sites (TFBSs). These function as the binding regions for transcription factors (TFs) and thereby regulate gene expression. In this context, various analysis tools have been developed. However, they have shortcomings in the combined analysis of expression patterns and significant TFBSs and in the functional analysis of target genes of significantly overrepresented putative regulators. In this study, we present a web-based A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms (FCAnalyzer). This system integrates microarray clustering data with similar expression patterns, and TFBS data in each cluster. FCAnalyzer is designed to perform two independent clustering procedures. The first process clusters gene expression profiles using the K-means clustering method, and the second process clusters predicted TFBSs in the upstream region of previously clustered genes using the hierarchical biclustering method for simultaneous grouping of genes and samples. This system offers retrieved information for predicted TFBSs in each cluster using $Match^{TM}$ in the TRANSFAC database. We used gene ontology term analysis for functional annotation of genes in the same cluster. We also provide the user with a combinatorial TFBS analysis of TFBS pairs. The enrichment of TFBS analysis and GO term analysis is statistically by the calculation of P values based on Fisher’s exact test, hypergeometric distribution and Bonferroni correction. FCAnalyzer is a web-based, user-friendly functional clustering analysis system that facilitates the transcriptional regulatory analysis of co-expressed genes. This system presents the analyses of clustered genes, significant TFBSs, significantly enriched TFBS combinations, their target genes and TFBS-TF pairs.

Consensus Clustering for Time Course Gene Expression Microarray Data

  • Kim, Seo-Young;Bae, Jong-Sung
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.335-348
    • /
    • 2005
  • The rapid development of microarray technologies enabled the monitoring of expression levels of thousands of genes simultaneously. Recently, the time course gene expression data are often measured to study dynamic biological systems and gene regulatory networks. For the data, biologists are attempting to group genes based on the temporal pattern of their expression levels. We apply the consensus clustering algorithm to a time course gene expression data in order to infer statistically meaningful information from the measurements. We evaluate each of consensus clustering and existing clustering methods with various validation measures. In this paper, we consider hierarchical clustering and Diana of existing methods, and consensus clustering with hierarchical clustering, Diana and mixed hierachical and Diana methods and evaluate their performances on a real micro array data set and two simulated data sets.

Unsupervised Clustering of Multivariate Time Series Microarray Experiments based on Incremental Non-Gaussian Analysis

  • Ng, Kam Swee;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Sun-Hee;Anh, Nguyen Thi Ngoc
    • International Journal of Contents
    • /
    • 제8권1호
    • /
    • pp.23-29
    • /
    • 2012
  • Multiple expression levels of genes obtained using time series microarray experiments have been exploited effectively to enhance understanding of a wide range of biological phenomena. However, the unique nature of microarray data is usually in the form of large matrices of expression genes with high dimensions. Among the huge number of genes presented in microarrays, only a small number of genes are expected to be effective for performing a certain task. Hence, discounting the majority of unaffected genes is the crucial goal of gene selection to improve accuracy for disease diagnosis. In this paper, a non-Gaussian weight matrix obtained from an incremental model is proposed to extract useful features of multivariate time series microarrays. The proposed method can automatically identify a small number of significant features via discovering hidden variables from a huge number of features. An unsupervised hierarchical clustering representative is then taken to evaluate the effectiveness of the proposed methodology. The proposed method achieves promising results based on predictive accuracy of clustering compared to existing methods of analysis. Furthermore, the proposed method offers a robust approach with low memory and computation costs.

Detection of Differentially Expressed Genes by Clustering Genes Using Class-Wise Averaged Data in Microarray Data

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • 제14권3호
    • /
    • pp.687-698
    • /
    • 2007
  • A normal mixture model with which dependence between classes is incorporated is proposed in order to detect differentially expressed genes. Gene clustering approaches suffer from the high dimensional column of microarray expression data matrix which leads to the over-fit problem. Various methods are proposed to solve the problem. In this paper, use of simple averaging data within each class is proposed to overcome the various problems due to high dimensionality when the normal mixture model is fitted. Some experiments through simulated data set and real data set show its availability in actuality.

Genomic Tree of Gene Contents Based on Functional Groups of KEGG Orthology

  • Kim Jin-Sik;Lee Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.748-756
    • /
    • 2006
  • We propose a genome-scale clustering approach to identify whole genome relationships using the functional groups given by the Kyoto Encyclopedia of Genes and Genomes Orthology (KO) database. The metabolic capabilities of each organism were defined by the number of genes in each functional category. The archaeal, bacterial, and eukaryotic genomes were compared by simultaneously applying a two-step clustering method, comprised of a self-organizing tree algorithm followed by unsupervised hierarchical clustering. The clustering results were consistent with various phenotypic characteristics of the organisms analyzed and, additionally, showed a different aspect of the relationship between genomes that have previously been established through rRNA-based comparisons. The proposed approach to collect and cluster the metabolic functional capabilities of organisms should make it a useful tool in predicting relationships among organisms.