Different Way of LMP/TAP/MHC Gene Clustering in Vertebrates,. Viviparity and Anti-tumor Immunity Failure

  • Bubanovic, Ivan (Department of Obstetrics and Gynecology, Medical Centre-Nis, Serbio and Montenegro) ;
  • Najman, Stevo (Institute for Biology, University Medical School-Nis, Serbia and Montenegro)
  • Published : 2005.03.01

Abstract

Class I and class II MHC genes have been identified in most of the jawed vertebrate taxa. In all investigated bony fish species, unlike mammals, the classical class I and class II MHC genes are not linked and even are found on different chromosomes. Linking and clustering of the class I and class II MHC genes is not the only phenomenon clearly detected in the evolution of immune system from cartilaginous to mammals. In all non-mammalian classes the LMP/TAP genes are highly conserved within class I genes region, while these genes are conserved within class II genes region only in mammals. Today we know that LMP/TAP genes in mammals have a crucial role in peptide processing for presentation within class I molecules, as well as in anti-tumor immunity. For these reasons, differences in clustering of LMP/TAP/MHC genes can be responsible for the differences in mechanisms and efficacy of anti-tumor immunity in non-mammalian vertebrates compared to same mechanisms in mammals. Also, the differences in cytokine network and anti-tumor antigens presentation within classes of vertebrates can be explained by toe peculiarity of LMP/TAP/MHC gene clustering.

Keywords

References

  1. Antzak DF and Allen WR (1989) Maternal immunological recognition of pregnancy in equids. J Reprod Fertil Suppl 37: 69-78
  2. Bacon SJ, Ellis SA, and Antczak DF (2002) Control of expression of MHC genes in horse trophoblast. Biol Reprod 66: 1612-1620 https://doi.org/10.1095/biolreprod66.6.1612
  3. Barnstable CJ, Bodmer WF, Brown G, et al. (1978) Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell 14: 9-22 https://doi.org/10.1016/0092-8674(78)90296-9
  4. Bodmer WF (1972) Evolutionary significance of the HLA system. Nature 237: 139-145 https://doi.org/10.1038/237139a0
  5. Boyson JE, Shufflebotham C, Cadavid LF, et al. (1996) The MHC class I genes of the rhesus monkey. Different evolutionary histories of MHC class I and II genes in primates. J Immunol 156: 4656-4660
  6. Bubanovic I (2004b) Evolution of the vetebrate immune system. In: Origin of Anti-Tumor Immunity Failure in Mammals. Kluwer Academic/Plenum Publishers. New York
  7. Bubanovic I and Najman S (2004a) Anti-tumor immunity failure in mammals. Evolution of the hypothesis. Acta Biotheor 52: 57-64 https://doi.org/10.1023/B:ACBI.0000015912.27661.b8
  8. Buss LW and Geen DR (1985) Histoincompatibility in vertebrates: the relict hypothesis. Dev Comp Immunol 9: 191-201 https://doi.org/10.1016/0145-305X(85)90110-7
  9. Cella M, Sallusto F, and Lanzavecchia A (1997) Origin, maturation and antigen presenting function of DCs. Curr Opin Immunol 9: 10-18 https://doi.org/10.1016/S0952-7915(97)80153-7
  10. Cella M, Scheidegger D, Palmer-Lehmann K, et al. (1996) Ligation of CD40 on DCs triggers production of high levels of IL-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184: 747-751 https://doi.org/10.1084/jem.184.2.747
  11. De Boer RJ (1995) The evolution of polymorphic compatibility molecules. Mol Biol Evol 12: 494-502
  12. Diehl M, Munz C, Keilholz W, et al. (1996) Non-classical HLA-G molecules are classical peptide presenters. Curr Biol 6: 305-314 https://doi.org/10.1016/S0960-9822(02)00481-5
  13. Doherty PC and Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256: 50-52 https://doi.org/10.1038/256050a0
  14. Donaldson WL, Zhang CH, Oriol JG, et al. (1990) Invasive equine trophoblast expresses conventional class I MHC antigens. Development 110: 63-71
  15. Flajnik MF, Canel C, Kramer J, et al. (1991) Which came first, MHC class I or class II? Immunogen 33: 295-230 https://doi.org/10.1007/BF00216688
  16. Fraser DG, Bailey E, Swinburne J, et al. (1998) Two MHC class II DQA for the horse. Animal Genet 29: 29-34
  17. Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76: 287-299 https://doi.org/10.1016/0092-8674(94)90336-0
  18. Gogolin-Ewens KJ, Lee CS, Mercer WR, et al. (1989) Site-directed differences in the immune response to the fetus. Imunology 66: 312-317
  19. Gyllensten UB and Erlich HA (1989) Ancient roots for polymorphism at the HLA-DQ $\alpha$ locus in primates. Proc Natl Acad Sci USA 86: 9986-9990 https://doi.org/10.1073/pnas.86.24.9986
  20. Hill AYS, Allsopp D, Dwiatkowski NM, et al. (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352: 595-600 https://doi.org/10.1038/352595a0
  21. Hughes AL and Nei M (1993) Evolutionary relationships of the classes of MHC genes. Immunogen 37: 337-341 https://doi.org/10.1007/BF00216798
  22. Hughes AL and Nei M (1988) Pattern of nucleotide substitution at MHC class I loci reveals overdominant selection. Nature 335: 167-168 https://doi.org/10.1038/335167a0
  23. Hviid TV, Moller C, Sorensen S, et al. (1998) Co-dominant expression of the HLA-G gene and various forms of alternatively spliced HLA-G mRNA in human first trimester trophoblast. Hum Immunol 59: 8798 https://doi.org/10.1016/S0198-8859(97)00259-0
  24. Karr RW, Gregersen PK, Obata F, et al. (1986) Analysis of DR $\beta$ and DQ $\beta$ chain cDNA clones from a DR7 haplotype. J Immunol 137: 2886-2890
  25. Kasahara M, Hayashi M, Tanaka K, et al. (1996) Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the MHC. Proc Natl Acad Sci USA 93: 9096-9100 https://doi.org/10.1073/pnas.93.17.9096
  26. Kasahara M, Nakaya J, Satta Y, et al. (1997) Chromosomal duplication and the emergence of the adaptive immune system. Tren Genet 13: 90-95 https://doi.org/10.1016/S0168-9525(97)01065-2
  27. Kasahara M, Yazquez M, Sato K, et al. (1992) Evolution of the MHC: isolation of class II A cDNA clones from the cartilaginous fish. Proc Natl Acad Sci USA 89: 6688-6695 https://doi.org/10.1073/pnas.89.15.6688
  28. Kaufman J, Volk H, and Wallny HJ (1995) A minimal essential MHC and an nonrecognized MHC-two extremes in selection for polymorphism. Immunol Rev 143: 63-68 https://doi.org/10.1111/j.1600-065X.1995.tb00670.x
  29. Knittler MR, Alberts P, Deverson EV, et al. (1999) Nucleotide binding by TAP mediates association with peptide and release of assembled MHC class I molecules. Curr Biol 9: 999-1008 https://doi.org/10.1016/S0960-9822(99)80448-5
  30. Lawlor DA, Zemmour J, Ennis PD, et al. (1990) Evolution of class I MHC genes and proteins: from natural selection to thymic selection. Annu Rev Immunol 8: 23-30 https://doi.org/10.1146/annurev.iy.08.040190.000323
  31. Lobigs M, Mullbacher A, Blanden RV, et al. (1999) Antigen presentation in syrian hamster cells: substrate selectivity of TAP controlled by polymorphic residues in TAP1 and differential requirements for loading of H2 class I molecules. Immunogenetics 11-12: 931-941 https://doi.org/10.1007/s002510050576
  32. Loflin PT, Laud PR, Watkins DI, et al. (1996) Identification of new TAP2 alleles in gorilla: evolution of the locus within hominoids. Immunogen 44: 161-169 https://doi.org/10.1007/s002510050107
  33. Low BG, Hansen PJ, Drost M, et al. (1990) Expression of MHC antigens on the bovine placenta. J Reprod Fertil 90: 235-243 https://doi.org/10.1530/jrf.0.0900235
  34. Macpherson TA, Ho H-N, Kuntz HW, et al. (1986) Localization of the Pa antigen on the placenta of the rat. Transplantation 41: 392-394 https://doi.org/10.1097/00007890-198603000-00022
  35. Maher JK, Tresnan DB, Deacon S, et al. (1996) Analysis of MHC class I expression in equine trophoblast cells using in situ hybridization. Placenta 17: 351-359 https://doi.org/10.1016/S0143-4004(96)90060-0
  36. Martinez-Laso J, Martin-Villa JM, Alvarez M, et al. (1994) Susceptibility to insulin-dependent diabetes mellitus and short cytoplasmic ATP-binding domain TAP2*01 alleles. Tissue Antigens 44: 184-188 https://doi.org/10.1111/j.1399-0039.1994.tb02377.x
  37. Mc Master MT, Librach CL, Zhou Y, et al. (1995) Human placental HLA-G expression is restricted to differentiated cytotrophoblasts. J Immunol 154: 3771-3778
  38. Moins-Teisserenc H, Semana G, Alizadeh M, et al. (1995) TAP2 gene polymorphism contributes to genetic susceptibility to multiple sclerosis. Hum Immunol 42: 195-202 https://doi.org/10.1016/0198-8859(94)00093-6
  39. Moriuchi J, Moriuchi T, and Silver J (1985) Nucleotide sequence of an HLA-DQ $\alpha$ chain derived from a DRw9 cell line: genetic and evolutionary implications. Proc Natl Acad Sci USA 82: 3420-3425 https://doi.org/10.1073/pnas.82.10.3420
  40. Nei M, Gu X, and Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94: 7799-7804 https://doi.org/10.1073/pnas.94.15.7799
  41. Ohta Y, Okamura K, McKinney C, et al. (2000) Primitive synteny of vertebrate MHC class I and class II genes. Proc Natl Acad Sci USA 97: 4712-4717 https://doi.org/10.1073/pnas.97.9.4712
  42. Okamura K, Ototake M, Nakanishi T, et al. (1997) The most primitive vertebrates with jaws possess highly polymorphic MHC class I genes comparable to those of humans. Immunity 7: 777-782 https://doi.org/10.1016/S1074-7613(00)80396-9
  43. Parham P, Adams EJ, and Arnett KL (1995) The origins of HLA-A,B,C polymorphism. Immunol Rev 143: 141-147 https://doi.org/10.1111/j.1600-065X.1995.tb00674.x
  44. Parham P, Arnett KL, Adams EJ, et al. (1997) Episodic evolution and turnover of HLA-B in the indigenous human populations of the Americas. Tissue Antigens 50: 219-225 https://doi.org/10.1111/j.1399-0039.1997.tb02866.x
  45. Parham P and Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272: 67-74 https://doi.org/10.1126/science.272.5258.67
  46. Ramsoondar JJ, Christopherson RJ, Guilbert LJ, et al. (1999) Lack of class I MHC antigens on trophoblast of periimplantation blastocysts and term placenta in the pig. Biol Reprod 60: 387-397 https://doi.org/10.1095/biolreprod60.2.387
  47. Rittig MG, Kuhn KH, Dechant CA, et al. (1996) Phagocytes from both vertebrate and invertebrate species use pooiling-phagocytosis. Dev Comp Immunol 20: 393-306 https://doi.org/10.1016/S0145-305X(96)00023-7
  48. Zhang L and Pagano JS (2001) IFN regulatory factor 7: a key cellular mediator of LMP-l in EBV latency and transformation. Semin Cancer Biol 11: 445-453 https://doi.org/10.1006/scbi.2001.0411